高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新冠疫情期间武汉空气质量变化的多维观测分析

王瑶 唐晓 陈科艺 胡柯 梁胜文 罗洪艳 宋雅婷 罗雪纯 王自发

王瑶, 唐晓, 陈科艺, 等. 2022. 新冠疫情期间武汉空气质量变化的多维观测分析[J]. 气候与环境研究, 27(6): 756−768 doi: 10.3878/j.issn.1006-9585.2022.21159
引用本文: 王瑶, 唐晓, 陈科艺, 等. 2022. 新冠疫情期间武汉空气质量变化的多维观测分析[J]. 气候与环境研究, 27(6): 756−768 doi: 10.3878/j.issn.1006-9585.2022.21159
WANG Yao, TANG Xiao, CHEN Keyi, et al. 2022. Multidimensional Observation Analysis of the Air Quality Changes in Wuhan during the Coronavirus Disease-2019 Pandemic [J]. Climatic and Environmental Research (in Chinese), 27 (6): 756−768 doi: 10.3878/j.issn.1006-9585.2022.21159
Citation: WANG Yao, TANG Xiao, CHEN Keyi, et al. 2022. Multidimensional Observation Analysis of the Air Quality Changes in Wuhan during the Coronavirus Disease-2019 Pandemic [J]. Climatic and Environmental Research (in Chinese), 27 (6): 756−768 doi: 10.3878/j.issn.1006-9585.2022.21159

新冠疫情期间武汉空气质量变化的多维观测分析

doi: 10.3878/j.issn.1006-9585.2022.21159
基金项目: 国家自然科学基金项目 41875164、92044303,国家重点研发计划项目2020YFA0607800
详细信息
    作者简介:

    王瑶,女,1997年出生,硕士研究生,主要从事大气污染数值模拟。E-mail:870120943@qq.com

    通讯作者:

    陈科艺,E-mail: ckydlt@aliyun.com

  • 中图分类号: P402

Multidimensional Observation Analysis of the Air Quality Changes in Wuhan during the Coronavirus Disease-2019 Pandemic

Funds: National Natural Science Foundation of China (Grants 41875164 and 92044303), National Key Research and Development Program of China (Grant 2020YFA0607800)
  • 摘要: 基于国控站点和武汉本地加密站点,利用2020年1月1日至2月13日6种常规污染物及细颗粒物(PM2.5)组分的逐小时监测数据,评估了新冠疫情管控前后武汉地区大气污染物的时空变化特征及管控措施对不同类型站点的影响区别。结果显示:在实施疫情管控措施后,武汉市颗粒物浓度大幅降低,基于两种观测网(89个站点)计算得出PM2.5、PM10浓度变化率分别为−23.44%、−32.95%,但O3浓度显著增加,变化率为55.22%,比国控站点变化率高10.6%;在空间分布上,颗粒物浓度呈现北高南低,但武汉偏南区域站点的浓度下降幅度更大,与偏南风频次增高导致管控措施更多影响下风方向区域有关。偏南区域站点NO2浓度降低幅度更大,同时O3浓度升高,其原因是NO浓度大幅降低,其滴定反应减弱,并且气象条件也有利于O3持续累积,维持较高浓度。从不同类别站点浓度变化差异来看,疫情管控措施对二次污染物的交通站点和工业园区站点影响最大,两者基于两种观测网计算所得的浓度变化率均超过国控站点的浓度变化率,PM2.5和O3的国控站点变化率分别比交通站点变化率低6%和18%。对于一次污染物而言,SO2、CO浓度变化小,浓度变化率分别为−6.10%和−5.61%,与疫情期间重点排放源没有停工有关;在6种常规污染物中,NO2浓度变化幅度最大,其浓度下降了−55.26 %,与交通管控直接相关。对比分析2019年和2020年同期气溶胶组分浓度发现,2020年疫情管控期间$ {\mathrm{N}\mathrm{O}}_{3}^{-} $/$ {\mathrm{S}\mathrm{O}}_{4}^{2-} $比值降低,更接近1,有机碳(OC)与元素碳(EC)比值增大到6.07,说明汽车尾气等移动源的比重减小,燃煤燃烧影响比重增大。
  • 图  1  武汉地区空气质量监测站点分布

    Figure  1.  Distribution of air quality monitoring stations in Wuhan

    图  2  2020年1月1日至2月13日武汉地区一组国控站点(蓝线)和加密站点(红线)的6种污染物浓度序列的对比。R为相关系数,RMSE为均方根误差,M1为国控站点均值,M2为加密站点均值,VD为有效数据比

    Figure  2.  Comparisons of the hourly observations of the six pollutants by the state-controlled sites (blue line) and the local-controlled sites (red line) in Wuhan from 1 Jan to 13 Feb 2020. R is the correlation coefficient, RMSE is the root-mean-square error, M1 is the mean value of the state-controlled sites, M2 is the mean value of the local-controlled sites, and VD is the effective data ratio

    图  3  武汉地区2020年(a1−c1)第一阶段(1月1~22日)、(a2−c2)第二阶段(1月23日至2月13日)PM2.5(左)、PM10(中)、O3(右)浓度及(a3−c3)两阶段的浓度差异

    Figure  3.  PM2.5 (left), PM10 (middle), and O3 (right) concentrations in the (a1−c1) first stage (1−22 Jan) and (a2−c2) second stage (23 Jan−13 Feb), and (a3−c3) the concentration differences of the two stages in Wuhan

    图  4  武汉地区2020年(a)第一、(b)第二阶段风向、风速玫瑰图

    Figure  4.  Rose chart of wind direction and speed in (a) the first and (b) the second stages in Wuhan in 2020

    图  5  武汉地区2020年(a)PM2.5和(b)O3第一、二阶段站点浓度频数分布

    Figure  5.  (a) PM2.5 and (b) O3 concentration frequency distributions in the first and second stages in Wuhan 2020

    图  6  武汉地区SO2(左)、CO(中)和NO2(右)(a1−c1)第一阶段、(a2−c2)第二阶段、(a3−c3)两阶段的浓度差异

    Figure  6.  SO2 (left), CO (middle), and NO2 (right) concentrations in the (a1−c1) first stage and (a2−c2) second stage, and (a3−c3) concentration diffidences between the two stages

    图  7  武汉地区2020年1月1日至2月13日O3和NO2浓度时间序列

    Figure  7.  Time series of O3 and NO2 concentrations in Wuhan from 1 Jan to 13 Feb 2020

    图  8  武汉地区2020年O3浓度(阴影)及(a)温度、(b)相对湿度、(c)风向和风速、(d)风速

    Figure  8.  Changes of O3 concentration (shadings) and (a) temperature, (b) relative humidity, (c) wind direction and wind speed, and (d) wind speed in Wuhan 2020

    图  9  2019(左列)、2020年(右列)(a、b)PM2.5组分及其气态前体物的浓度均值和(c、d)第二阶段基于第一阶段的变化率

    Figure  9.  (a, b) Mean concentrations of PM2.5 components and their gaseous precursors and (c, d) the rate of change in the second stage based on the first stage in 2019 (left) and 2020 (right)

    图  10  2020年武汉地区第一阶段与第二阶段(a)PM2.5、(b)SO2、(c)PM10、(d)CO、(e)O3、(f)NO2的浓度均值

    Figure  10.  Mean concentrations of (a) PM2.5, (b) SO2, (c) PM10, (d) CO, (e) O3, and (f) NO2 at different stations in the first phase and the second phase in Wuhan 2020

    表  1  2020年武汉地区国控站点和加密站点PM2.5浓度观测值差异的统计参数对比

    Table  1.   Comparison of statistical parameters of observed PM2.5 concentration between the state-controlled sites and local-controlled sites in Wuhan 2020

    国控站点加密站点    站点间距离/km相关系数(R浓度均方根误差(RMSE)/μg m−3
    汉口花桥大气复合污染监测实验室1.7520.995.5
    沌口新区神龙大道70号1.580.9212.9
    汉阳月湖汉阳环保局1.840.9216.7
    武昌紫阳洪山区烽火集团2.8470.9414.2
    东湖梨园武昌水果湖中学2.5910.9516.8
    青山钢花武昌铁四院中学2.2840.9621.4
    汉口江滩大气复合污染监测实验室3.2220.9216.1
    吴家山临空港大道金北一路2.5810.9412.8
    民族大道洪山光谷职业学院2.2610.9313.1
    下载: 导出CSV

    表  2  2020年武汉地区国控站点和加密站点PM2.5、PM10和O3的浓度均值及变化率

    Table  2.   Mean concentrations and change rates of PM2.5, PM10, and O3 at the state-controlled sites and local-controlled sites in Wuhan 2020

    污染物观测站点浓度均值变化率
    第一阶段/μg m−3第二阶段/μg m−3
    PM2.5国控站点6148−21.31%
    加密站点6449−23.44%
    全部6449−23.44%
    PM10国控站点7655−27.63%
    加密站点9060−33.33%
    全部8859−32.95%
    O3国控站点659444.62%
    加密站点6710556.72%
    全部6710455.22%
    下载: 导出CSV

    表  3  2020年武汉地区国控站点和加密站点SO2、CO和NO2的浓度均值及变化率

    Table  3.   Mean concentrations and change rates of SO2, CO, and NO2 at the state-controlled sites and local-controlled sites in Wuhan 2020

    污染物观测站点浓度均值变化率
    第一阶段/μg m−3第二阶段/μg m−3
    SO2国控站点 6.6 6.3−4.55%
    加密站点 8.4 7.9−5.95%
    全部 8.2 7.7−6.10%
    CO国控站点 1.08×103 0.96×103−11.11%
    加密站点 1.07×103 1.01×103−5.61%
    全部 1.07×103 1.01×103−5.61%
    NO2国控站点 42 21−50.00%
    加密站点 37 16−56.76%
    全部 38 17−55.26%
    下载: 导出CSV

    表  4  2019年和2020年武汉地区$ {\mathbf{N}\mathbf{O}}_{3}^{-} $$ {\mathbf{S}\mathbf{O}}_{4}^{2-} $、OC与EC在第一、二阶段中的浓度比值

    Table  4.   Ratios of $ {\mathbf{N}\mathbf{O}}_{3}^{-} $ to $ {\mathbf{S}\mathbf{O}}_{4}^{2-} $ and OC to EC in the first and second stages in Wuhan 2019 and 2020

    年份
    浓度比值时段2020年2019年
    $ {\mathrm{N}\mathrm{O}}_{3}^{-} $/$ {\mathrm{S}\mathrm{O}}_{4}^{2-} $1月1~22日2.522.13
    1月23日至2月13日1.311.80
    OC/EC1月1~22日4.694.05
    1月23日至2月13日6.074.47
    下载: 导出CSV

    表  5  2020年武汉地区第二阶段相较于第一阶段PM2.5、PM10、O3、SO2、CO、NO2的浓度变化率

    Table  5.   Concentration change rate of PM2.5, PM10, O3, SO2, CO, and NO2 at different stations in the second phase compared with the first phase in Wuhan 2020

    各污染物浓度变化率
    站点PM2.5PM10O3SO2CONO2
    工业园区−27.14%−36.46%64.64%−12.00%−12.82%−52.50%
    交通点−27.54%−36.56%61.57%−25.97%−18.02%−53.85%
    网格化−20.97%−32.58%53.88%0−1.90%−54.29%
    省控点−14.04%−25.32%43.92%−6.76%16.49%−55.56%
    国控点−21.31%−27.63%45.83%−4.55%−11.11%−50.00%
    下载: 导出CSV
  • [1] Bao R, Zhang A C. 2020. Does lockdown reduce air pollution? Evidence from 44 cities in northern China [J]. Sci. Total Environ., 731: 139052. doi: 10.1016/j.scitotenv.2020.139052
    [2] Bauwens M, Compernolle S, Stavrakou T, et al. 2020. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations [J]. Geophys. Res. Lett., 47(11): e2020GL087978. doi: 10.1029/2020GL087978
    [3] Chu B W, Zhang S P, Liu J, et al. 2021. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic [J]. J. Environ. Sci., 99: 346−353. doi: 10.1016/j.jes.2020.06.031
    [4] Chu S H. 2005. Stable estimate of primary OC/EC ratios in the EC tracer method [J]. Atmos. Environ., 39(8): 1383−1392. doi: 10.1016/j.atmosenv.2004.11.038
    [5] Fu S H, Gu Y Z. 2017. Highway toll and air pollution: Evidence from Chinese cities [J]. J. Environ. Econom. Manag., 83: 32−49. doi: 10.1016/j.jeem.2016.11.007
    [6] Gao L, Yue X, Meng X Y, et al. 2020. Comparison of ozone and PM2.5 concentrations over urban, suburban, and background sites in China [J]. Adv. Atmos. Sci., 37(12): 1297−1309. doi: 10.1007/s00376-020-0054-2
    [7] Ge S S, Wang G H, Zhang S, et al. 2019. Abundant NH3 in China enhances atmospheric HONO production by promoting the heterogeneous reaction of SO2 with NO2 [J]. Environ. Sci. Technol., 53(24): 14339−14347. doi: 10.1021/acs.est.9b04196
    [8] Geng F H, Tie X, Xu J M, et al. 2008. Characterizations of ozone, NOx, and VOCs measured in Shanghai, China [J]. Atmos. Environ., 42(29): 6873−6883. doi: 10.1016/j.atmosenv.2008.05.045
    [9] Huang X, Ding A J, Gao J, et al. 2021. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China [J]. Natl. Sci. Rev., 8(2): nwaa137. doi: 10.1093/nsr/nwaa137
    [10] Hui L R, Liu X G, Tan Q W, et al. 2018. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China [J]. Atmos. Environ., 192: 55−71. doi: 10.1016/j.atmosenv.2018.08.042
    [11] Hui L R, Liu X G, Tan Q W, et al. 2019. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China [J]. Sci. Total Environ., 650: 2624−2639. doi: 10.1016/j.scitotenv.2018.10.029
    [12] Le T H, Wang Y, Liu L, et al. 2020. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China [J]. Science, 369(6504): 702−706. doi: 10.1126/science.abb7431
    [13] 乐旭, 雷亚栋, 周浩, 等. 2020. 新冠肺炎疫情期间中国人为碳排放和大气污染物的变化 [J]. 大气科学学报, 43(2): 265−274. doi: 10.13878/j.cnki.dqkxxb.20200408010

    Yue Xu, Lei Yadong, Zhou Hao, et al. 2020. Changes of anthropogenic carbon emissions and air pollutants during the COVID-19 epidemic in China [J]. Trans. Atmos. Sci. (in Chinese), 43(2): 265−274. doi: 10.13878/j.cnki.dqkxxb.20200408010
    [14] Li K, Jacob D J, Liao H, et al. 2019. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China [J]. Proc. Natl. Acad. Sci. USA, 116(2): 422−427. doi: 10.1073/pnas.1812168116
    [15] Lian X B, Huang J P, Huang R J, et al. 2020. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city [J]. Sci. Total Environ., 742: 140556. doi: 10.1016/j.scitotenv.2020.140556
    [16] Lu M M, Tang X, Wang Z F, et al. 2017. Source tagging modeling study of heavy haze episodes under complex regional transport processes over Wuhan megacity, Central China [J]. Environ. Pollut., 231: 612−621. doi: 10.1016/j.envpol.2017.08.046
    [17] Sicard P, De Marco A, Agathokleous E, et al. 2020. Amplified ozone pollution in cities during the COVID-19 lockdown [J]. Sci. Total Environ., 735: 139542. doi: 10.1016/j.scitotenv.2020.139542
    [18] Shi X Q, Brasseur G P. 2020. The response in air quality to the reduction of Chinese economic activities during the COVID-19 outbreak [J]. Geophys. Res. Lett., 47(11): e2020GL088070. doi: 10.1029/2020GL088070
    [19] Sillman S, Logan J A, Wofsy S C. 1990. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes [J]. J. Geophys. Res. Atmos., 95(D2): 1837−1851. doi: 10.1029/JD095iD02p01837
    [20] Tian H Y, Liu Y H, Li Y D, et al. 2020. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China [J]. Science, 368(6491): 638−642. doi: 10.1126/science.abb6105
    [21] Wang C, Horby P W, Hayden F G, et al. 2020. A novel coronavirus outbreak of global health concern [J]. Lancet, 395(10223): 470−473. doi: 10.1016/S0140-6736(20)30185-9
    [22] Wang P F, Chen K Y, Zhu S Q, et al. 2020. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak [J]. Resour. Conserv. Recycl., 158: 104814. doi: 10.1016/j.resconrec.2020.104814
    [23] Wang Q, Su M. 2020. A preliminary assessment of the impact of COVID-19 on environment—A case study of China [J]. Sci. Total Environ., 728: 138915. doi: 10.1016/j.scitotenv.2020.138915
    [24] Wang T, Xue L K, Brimblecombe P, et al. 2017. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects [J]. Sci. Total Environ., 575: 1582−1596. doi: 10.1016/j.scitotenv.2016.10.081
    [25] Wang Y G, Ying Q, Hu J L, et al. 2014. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014 [J]. Environ. Int., 73: 413−422. doi: 10.1016/j.envint.2014.08.016
    [26] Xiong Y, Zhou J B, Schauer J J, et al. 2017. Seasonal and spatial differences in source contributions to PM2.5 in Wuhan, China [J]. Sci. Total Environ., 577: 155−165. doi: 10.1016/j.scitotenv.2016.10.150
    [27] Xu K J, Cui K P, Young L H, et al. 2020. Impact of the COVID-19 event on air quality in central China [J]. Aerosol Air Qual. Res., 20(5): 915−929. doi: 10.4209/aaqr.2020.04.0150
    [28] Yang F, Tan J, Zhao Q, et al. 2011. Characteristics of PM2.5 speciation in representative megacities and across China [J]. Atmos. Chem. Phys., 11(11): 5207−5219. doi: 10.5194/acp-11-5207-2011
    [29] Zeng P, Lyu X P, Guo H, et al. 2018. Causes of ozone pollution in summer in Wuhan, Central China [J]. Environ. Pollut., 241: 852−861. doi: 10.1016/j.envpol.2018.05.042
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  19
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-12-12

目录

    /

    返回文章
    返回