Variation Characteristics of Daytime/Nighttime Rainy Days of Different Magnitudes over the Tibetan Plateau and Southwest China over 60 Years
-
摘要: 利用国家气象科学数据中心的青藏高原81个站和西南地区80个气象站点的逐日昼夜降水量资料,统计分析了1961~2020年60年来两个地区不同量级昼夜降雨日数及其差异的年变化、年际变化(趋势)特征。结果表明:(1)青藏高原和西南地区不同等级昼夜降水日数年变化都是在5月迅速增多,11月显著减少;两个地区的降雨日数昼夜差异大的月份均在5~10月,大雨和暴雨日数在5~10月的贡献更大,青藏高原暴雨日数占全年暴雨日数的85%以上、大雨占比90%以上,西南地区这两个量级降水占比分别为93%和86%;两个地区雨季夜间发生极端强降水(暴雨)的概率远大于白天。(2)两个地区雨季不同量级昼夜降水日数差异显著。三江源和青藏高原东南部昼夜都是小雨、中雨的频次多,大雨仅夜间在西藏东南部及三江源东侧发生较多;暴雨仅在青藏高原东部多发,夜间发生的站点明显多于白天。西南地区昼夜小雨和中雨发生率较高的地区包括川中区域、川西边缘山地和云南西南部;大雨在云南西南部白天易于发生,川中则是夜间易于发生;暴雨以上量级的典型多发区为四川中东部、重庆西部、贵州中南部。(3)两个区域雨季昼夜分等级降雨日数的年际变化总体趋势有明显的不同。青藏高原地区除了夜间小雨日数为显著减少外,其余的不同量级昼夜降雨日数都显著增加,夜间的增加趋势均大于白天,大雨和暴雨在夜间的增加趋势几乎是白天的2倍。与青藏高原不同的是,西南地区小量级降水(小雨—中雨—大雨)日数总体呈显著减少趋势,其中夜间的小雨日数减幅最大,为白昼的2倍左右;大量级降水(暴雨—大暴雨)日数则是相反的增加趋势,且夜间增加趋势大于白天。Abstract: The daily daytime/nighttime precipitation data of 81 National Meteorological Science Data Center stations on the Qinghai–Tibet Plateau and 80 stations in Southwest China were used to statistically analyze the daytime/nighttime rainy days of different magnitudes, differences in this number in the two regions from 1961 to 2020, and interannual change (trend) characteristics. The results showed the following: (1) The number of daytime/nighttime rainy days of different magnitudes on the Tibetan Plateau and in Southwest China increased rapidly in May and decreased significantly in November; large differences in the number of daytime/nighttime rainy days in the two regions were observed in May–October, and the number of heavy rain and rainstorm days was higher in May–October. The number of rainstorm days on the Tibetan Plateau accounted for >85% of the total number of rainstorm days in the year, heavy rain accounted for >90%, and the proportions of these two levels of precipitation were 93% and 86%, respectively, in Southwest China. The probability of extremely heavy precipitation (rainstorms) during the rainy season in both regions was substantially higher at night than during the day. (2) In addition to obvious regional differences in the number of daytime/nighttime rainy days of different magnitudes in the two regions during the rainy season, very significant differences were observed between daytime and nighttime. The Three-Rivers Source region and the southeastern part of the Tibetan Plateau have frequent light and moderate rains during the day and night. Heavy rain occurs exclusively at night in southeastern Tibet and the east of the Three-Rivers Source region; rainstorms occur only in the east of the Tibetan Plateau, and there are visibly more sites receiving precipitation at night than during the day. Central Sichuan, western Sichuan marginal mountains, and southwestern Yunnan in Southwest China have a high incidence of daytime/nighttime light rain and moderate rain; heavy rain is more likely to occur during the day in southwestern Yunnan, whereas it is more likely to occur at night in central Sichuan. Typical areas with rainstorms are central and eastern Sichuan, western Chongqing, and central and southern Guizhou. (3) The overall trends of interannual changes in the number of rainy seasons in the rainy season are significantly different between daytime/nighttime-graded rain days. In the Tibetan Plateau, except for the significant decrease in the number of light rainy days at night, the rest of the rainy days of different magnitudes increased significantly during the daytime and nighttime, with the increasing trend at night being greater than that during the day, and the increasing trend of heavy rain and rainstorm at night was almost twice that of the day. Unlike the Tibetan Plateau, the number of days with light precipitation (light rain, moderate rain, and heavy rain) decreased significantly in Southwest China. Among them, the number of light rainy days at night decreased the most, approximately twice as much as during the daytime; the number of days with heavy precipitation (rainstorm or torrential rain) increased in the opposite direction, and the increasing trend at night is greater than that during the daytime.
-
图 1 青藏高原、西南地区研究区域站点分布及区域划分示意图(黑色圆点为青藏高原站点,红色圆点为西南地区站点)
Figure 1. Schematic of station distribution and area division in the study area of the Qinghai–Tibet Plateau and Southwest China (the black dots represent the stations on the Tibetan Plateau, and the red dots represent the stations in Southwest China)
图 2 1961~2020年平均青藏高原地区不同等级昼雨日数、夜雨日数站次累计年变化及夜雨日数与昼雨日数之比:(a)小雨;(b)中雨;(c)大雨;(d)暴雨以上
Figure 2. Cumulative annual change in the number of daytime/nighttime rainy days and the ratio of nighttime rainy days to daytime rainy days of different grades on the Tibetan Plateau from 1961 to 2020: (a) Light rain; (b) moderate rain; (c) heavy rain; (d) rainstorm and more
图 3 1961~2020年平均西南地区不同等级昼雨日数、夜雨日数站次累计年变化及夜雨日数与昼雨日数之比:(a)小雨;(b)中雨;(c)大雨;(d)暴雨以上
Figure 3. Cumulative annual change in the number of daytime/nighttime rainy days and the ratio of nighttime rainy days to daytime rainy days of different grades in Southwest China from 1961 to 2020: (a) Light rain; (b) moderate rain; (c) heavy rain; (d) rainstorm and more
图 4 1961~2020年青藏高原和西南地区雨季小雨—大雨不同等级年均昼夜降雨日数空间分布(单位:d/a):(a)昼小雨日数;(b)夜小雨日数;(c)昼中雨日数;(d)夜中雨日数;(e)昼大雨日数;(f)夜大雨日数
Figure 4. Spatial distribution of annual averaged daytime/nighttime rainy days in the rainy season at different levels (light rain—heavy rain) (units: d/a) over the Tibetan Plateau and Southwest China from 1961 to 2020: (a) Light rainy days during the day; (b) light rainy days at night; (c) moderate rainy days during the day; (d) moderate rainy days in the night; (e) heavy rainy days during the day; (f) heavy rainy days at night
图 5 1961~2020年青藏高原和西南地区雨季暴雨—特大暴雨不同等级累计昼夜降雨日数空间分布(单位:d):(a)昼暴雨日数;(b)夜暴雨日数;(c)昼大暴雨日数;(d)夜大暴雨日数;(e)昼特大暴雨日数;(f)夜特大暴雨日数
Figure 5. Spatial distribution of the cumulative number of daytime/nighttime rainy days (units: d) in the rainy season for different grades (rainstorm-extraordinary rainstorm) over the Tibetan Plateau and Southwest China from 1961 to 2020: (a) Rainstorm days during the day; (b) rainstorm days at night; (c) torrential rainy days during the day; (d) torrential rainy days at night; (e) extraordinary rainstorm days during the day; (f) extraordinary rainstorm days at night
图 6 1961~2020年青藏高原和西南地区雨季昼夜小雨—大雨日数的空间倾向率分布(单位:d/10 a,黑色标记表示通过95%置信度检验的站点):(a)昼小雨日数;(b)夜小雨日数;(c)昼中雨日数;(d)夜中雨日数;(e)昼大雨日数;(f)夜大雨日数
Figure 6. Distribution of the spatial tendency rate of daytime/nighttime rainy days during the rainy season between light rain and heavy rain over the Tibetan Plateau and Southwest China from 1961 to 2020 (the black marks are sites that pass the test at 95% confidence level, units: d/10 a): (a) Light rainy days during the day; (b) light rainy days at night; (c) moderate rainy days during the day; (d) moderate rainy days at night; (e) heavy rainy days during the day; (f) heavy rainy days at night
图 7 1961~2020年青藏高原和西南地区雨季昼夜暴雨—特大暴雨日数的空间倾向率分布(单位:d/10 a,黑色标记为通过95%置信度检验的站点):(a)昼暴雨日数;(b)夜暴雨日数;(c)昼大暴雨日数;(d)夜大暴雨日数;(e)昼特大暴雨日数;(f)夜特大暴雨日数
Figure 7. Distribution of spatial tendency rate of daytime/nighttime rainstorm—extraordinarily heavy rainy days during the rainy season over the Tibetan Plateau and Southwest China from 1961 to 2020 (black marks are sites that pass the test at 95% confidence level, units: d/10 a): (a) Rainstorm days during the day; (b) rainstorm days at night; (c) torrential rain days during the day; (d) torrential rain days in the night; (e) extraordinary rainstorm days during the day; (f) extraordinary rainstorm days at night
图 8 1961~2020年青藏高原雨季不同等级月平均昼雨、夜雨日数站次累计的年际变化及夜雨日数与昼雨日数的比值(柱状图):(a)小雨;(b)中雨;(c)大雨;(d)暴雨以上
Figure 8. Interannual variation in the cumulative number of monthly average rainy days and the ratio (black bars) of nighttime rainy days to daytime rainy days of different magnitudes during rainy season on the Qinghai–Tibet Plateau from 1961 to 2020: (a) Light rain; (b) moderate rain; (c) heavy rain; (d) rainstorm and more
图 9 1961~2020年西南地区雨季不同等级月平均昼雨、夜雨日数站次累计的年际变化及夜雨日数与昼雨日数的比值:(a)小雨;(b)中雨;(c)大雨;(d)暴雨以上
Figure 9. Interannual variation of the cumulative number of monthly average rainy days and the ratio (black bars) of nighttime rainy days to the daytime rainy days of different magnitudes during the rainy season in Southwest China from 1961 to 2020: (a) Light rain; (b) moderate rain; (c) heavy rain; (d) rainstorm and more
表 1 12 h降水总量等级划分
Table 1. Classification of 12-h total precipitation levels
降水强度等级 12 h降水总量/mm 小雨 ≤4.9 中雨 5.0~14.9 大雨 15.0~29.9 暴雨 30.0~69.9 大暴雨 70.0~139.9 特大暴雨 ≥140.0 表 2 1961~2020年青藏高原不同等级昼夜降雨日数的气候倾向率站点数个数统计
Table 2. Statistics on the number of climatic tendency rate stations of different grades of daytime/nighttime rainy days on the Qinghai–Tibet Plateau from 1961 to 2020
降水量级 站点数 昼降雨日数趋势 夜降雨日数趋势 增加 减少 显著增加 显著减少 增加 减少 显著增加 显著减少 小雨 35 46 13 14 31 50 11 25 中雨 63 18 24 0 62 19 16 3 大雨 56 23 10 1 48 33 12 0 暴雨 36 19 5 0 50 27 8 0 大暴雨 2 3 0 0 6 5 0 0 特大暴雨 0 0 0 0 0 1 0 0 表 3 1961~2020年西南地区不同等级昼夜降雨日数的气候倾向率站点个数统计
Table 3. Statistics on the number of climatic tendency rate stations of different grades of daytime/nighttime rainy days in Southwest China from 1961 to 2020
降水量级 站点数 昼降雨日数趋势 昼降雨日数趋势 增加 减少 显著增加 显著减少 增加 减少 显著增加 显著减少 小雨 2 78 0 55 0 80 0 65 中雨 18 62 1 21 9 71 0 13 大雨 33 47 1 7 28 50 0 5 暴雨 42 38 6 1 44 36 4 2 大暴雨 47 26 3 2 48 32 9 3 特大暴雨 11 10 0 0 26 25 0 0 表 4 1961~2020年青藏高原和西南地区雨季分区不同等级月平均昼夜降雨日数站次累计的年际变化趋势
Table 4. Interannual variation trend of the cumulative number of stations with monthly average daytime/nighttime rainy days of different grades in the rainy season from 1961 to 2020
stations d/10 a 降水量级 青藏高原降雨日数站次
累计的年际变化趋势西南地区降雨日数站次
累计的年际变化趋势昼雨 夜雨 昼雨 夜雨 小雨 4.67* -2.92 -19.85* -34.73* 中雨 4.05* 4.71* -4.26* -4.83* 大雨 0.59* 1.17* -0.80 -0.59 暴雨 0.14* 0.30* 0.39 0.58 *表示通过了95%的置信度检验。 -
[1] Bai Aijuan, Zhai Panmao, Liu Xiaodong. 2007. Climatology and trends of wet spells in China [J]. Theor. Appl. Climatol. , 88(3–4): 139–148. doi: 10.1007/s00704-006-0235-7 [2] 白虎志, 马振锋, 董文杰. 2005. 青藏高原地区季风特征及与我国气候异常的联系 [J]. 应用气象学报, 16(4): 484−491. doi: 10.3969/j.issn.1001-7313.2005.04.009Bai Huzhi, Ma Zhenfeng, Dong Wenjie. 2005. Relationship between Qinghai–Xizang Plateau region monsoon features and abnormal climate in China [J]. Journal of Applied Meteorological Science (in Chinese), 16(4): 484−491. doi: 10.3969/j.issn.1001-7313.2005.04.009 [3] 白莹莹, 张焱, 高阳华, 等. 2011. 四川盆地降水变化的区域差异 [J]. 地理科学, 31(4): 478−484. doi: 10.13249/j.cnki.sgs.2011.04.018Bai Yingying, Zhang Yan, Gao Yanghua, et al. 2011. Spatial differences of precipitation over Sichuan basin [J]. Scientia Geographica Sinica (in Chinese), 31(4): 478−484. doi: 10.13249/j.cnki.sgs.2011.04.018 [4] 曹瑜, 游庆龙, 马茜蓉, 等. 2017. 青藏高原夏季极端降水概率分布特征 [J]. 高原气象, 36(5): 1176−1187. doi: 10.7522/j.issn.1000-0534.2016.00131Cao Yu, You Qinglong, Ma Qianrong, et al. 2017. Probability distribution for the summer extreme precipitation in the Qinghai–Tibetan Plateau [J]. Plateau Meteorology (in Chinese), 36(5): 1176−1187. doi: 10.7522/j.issn.1000-0534.2016.00131 [5] 曹瑜, 游庆龙, 马茜蓉. 2019. 青藏高原中东部夏季极端降水年代际变化特征 [J]. 气象科学, 39(4): 437−445. doi: 10.3969/2018jms.0077Cao Yu, You Qinglong, Ma Qianrong. 2019. Interdecadal characteristics of the summer extreme precipitation in the central and eastern Tibetan Plateau [J]. Journal of the Meteorological Sciences (in Chinese), 39(4): 437−445. doi: 10.3969/2018jms.0077 [6] 崔方, 郭品文, 吴建秋. 2009. 近50年中国极端降水事件的观测研究 [J]. 安徽农业科学, 37(27): 13170−13172. doi: 10.13989/j.cnki.0517-6611.2009.27.005Cui Fang, Guo Pinwen, Wu Jianqiu. 2009. Observation study on the extreme precipitation events in China during recent 50 years [J]. Journal of Anhui Agricultural Sciences (in Chinese), 37(27): 13170−13172. doi: 10.13989/j.cnki.0517-6611.2009.27.005 [7] 房巧敏, 龚道溢, 毛睿. 2007. 中国近46年来冬半年日降水变化特征分析 [J]. 地理科学, 27(5): 711−717. doi: 10.3969/j.issn.1000-0690.2007.05.018Fang Qiaomin, Gong Daoyi, Mao Rui. 2007. Changes of daily precipitation of China in wintertime during the last 46 years [J]. Scientia Geographica Sinica (in Chinese), 27(5): 711−717. doi: 10.3969/j.issn.1000-0690.2007.05.018 [8] 冯松, 汤懋苍, 王冬梅. 1998. 青藏高原是我国气候变化启动区的新证据 [J]. 科学通报, 43(6): 633−636. doi: 10.1360/csb1998-43-6-633Feng Song, Tang Maocang, Wang Dongmei. 1998. The Qinghai–Tibet Plateau is the new evidence of my country's climate change initiation area [J]. Chinese Science Bulletin (in Chinese), 43(6): 633−636. doi: 10.1360/csb1998-43-6-633 [9] 顾学志, 叶磊, 赵铜铁钢, 等. 2021. 中国日降水量的概率分布 [J]. 水利学报, 52(10): 1248−1262. doi: 10.13243/j.cnki.slxb.20201066Gu Xuezhi, Ye Lei, Zhao Tongtiegang, et al. 2021. Probability distribution of daily precipitation in China [J]. Journal of Hydraulic Engineering (in Chinese), 52(10): 1248−1262. doi: 10.13243/j.cnki.slxb.20201066 [10] 胡迪, 李跃清. 2015. 青藏高原东侧四川地区夜雨时空变化特征 [J]. 大气科学, 39(1): 161−179. doi: 10.3878/j.issn.1006-9895.1405.13307Hu Di, Li Yueqing. 2015. Spatial and temporal variations of nocturnal precipitation in Sichuan over the eastern Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(1): 161−179. doi: 10.3878/j.issn.1006-9895.1405.13307 [11] 黄荣辉, 陈际龙, 周连童, 等. 2003. 关于中国重大气候灾害与东亚气候系统之间关系的研究 [J]. 大气科学, 27(4): 770−787. doi: 10.3878/j.issn.1006-9895.2003.04.22Huang Ronghui, Chen Jilong, Zhou Liantong, et al. 2003. Studies on the relationship between the severe climatic disasters in China and the East Asia climate system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 770−787. doi: 10.3878/j.issn.1006-9895.2003.04.22 [12] 贾艳青, 张勃, 张耀宗, 等. 2016. 中国华北地区昼夜降水时空变化特征 [J]. 地理与地理信息科学, 32(5): 103−109. doi: 10.3969/j.issn.1672-0504.2016.05.016Jia Yanqing, Zhang Bo, Zhang Yaozong, et al. 2016. Characteristics of spatio-temporal variation of day and night precipitation in North China [J]. Geography and Geo-Information Science (in Chinese), 32(5): 103−109. doi: 10.3969/j.issn.1672-0504.2016.05.016 [13] 康兴成. 1996. 青藏高原地区近40年来气候变化的特征 [J]. 冰川冻土, 18(S1): 281−288.Kang Xingcheng. 1996. The features of the climate changes in the Qing–Zang Plateau area during the last 40 years [J]. Journal of Glaciology and Geocryology (in Chinese), 18(S1): 281−288. [14] 李川, 陈静, 何光碧. 2006. 青藏高原东侧陡峭地形对一次强降水天气过程的影响 [J]. 高原气象, 25(3): 442−450. doi: 10.3321/j.issn:1000-0534.2006.03.012Li Chuan, Chen Jing, He Guangbi. 2006. Impact of the steep terrain of eastern Qinghai–Xizang Plateau on the genesis and development of extreme heavy rainfall event [J]. Plateau Meteorology (in Chinese), 25(3): 442−450. doi: 10.3321/j.issn:1000-0534.2006.03.012 [15] Li Yueqing, Li Dejun, Yang Song, et al. 2010. Characteristics of the precipitation over the eastern edge of the Tibetan Plateau [J]. Meteor. Atmos. Phys. , 106(1–2): 49–56. doi: 10.1007/s00703-009-0048-1 [16] 林云萍, 赵春生. 2009. 中国地区不同强度降水的变化趋势 [J]. 北京大学学报(自然科学版), 45(6): 995−1002. doi: 10.3321/j.issn:0479-8023.2009.06.014Lin Yunping, Zhao Chunsheng. 2009. Trends of precipitation of different intensity in China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 45(6): 995−1002. doi: 10.3321/j.issn:0479-8023.2009.06.014 [17] 刘义花, 马元仓, 杨延华, 等. 2020. 1961~2018年青海高原昼夜雨量时空变化特征分析 [J]. 冰川冻土, 42(3): 996−1006. doi: 10.7522/j.issn.1000-0240.2020.0072Liu Yihua, Ma Yuancang, Yang Yanhua, et al. 2020. Research of the spatio−temporal variation characteristics of daytime and nighttime precipitation in the Qinghai Plateau from 1961 to 2018 [J]. Journal of Glaciology and Geocryology (in Chinese), 42(3): 996−1006. doi: 10.7522/j.issn.1000-0240.2020.0072 [18] 卢鹤立, 邵全琴, 刘纪远, 等. 2007. 近44年来青藏高原夏季降水的时空分布特征 [J]. 地理学报, 62(9): 946−958. doi: 10.3321/j.issn:0375-5444.2007.09.006Lu Heli, Shao Quanqin, Liu Jiyuan, et al. 2007. Temporo−spatial distribution of summer precipitation over Qinghai–Tibet Plateau during the last 44 years [J]. Acta Geographica Sinica (in Chinese), 62(9): 946−958. doi: 10.3321/j.issn:0375-5444.2007.09.006 [19] 吕炯. 1942. 巴山夜雨 [J]. 气象学报, 16(S1): 36−53.Lü Jiong. 1942. Night rain in Bashan Mountain [J]. Acta Meteorologica Sinica (in Chinese), 16(S1): 36−53. [20] 马耀明, 胡泽勇, 田立德, 等. 2014. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展 [J]. 地球科学进展, 29(2): 207−215. doi: 10.11867/j.issn.1001-8166.2014.02.0207Ma Yaoming, Hu Zeyong, Tian Lide, et al. 2014. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia [J]. Advances in Earth Science (in Chinese), 29(2): 207−215. doi: 10.11867/j.issn.1001-8166.2014.02.0207 [21] 马振锋, 彭骏, 高文良, 等. 2006. 近40年西南地区的气候变化事实 [J]. 高原气象, 25(4): 633−642. doi: 10.3321/j.issn:1000-0534.2006.04.010Ma Zhenfeng, Peng Jun, Gao Wenliang, et al. 2006. Climate variation of Southwest China in recent 40 years [J]. Plateau Meteorology (in Chinese), 25(4): 633−642. doi: 10.3321/j.issn:1000-0534.2006.04.010 [22] 彭贵康, 柴复新, 曾庆存, 等. 1994. "雅安天漏"研究I: 天气分析 [J]. 大气科学, 18(4): 466−475. doi: 10.3878/j.issn.1006-9895.1994.04.11Peng Guikang, Chai Fuxin, Zeng Qingcun, et al. 1994. Research on “Ya-An-Tian-Lou”. Part I: Weather analysis [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18(4): 466−475. doi: 10.3878/j.issn.1006-9895.1994.04.11 [23] 任小玢, 董治宝, 周正朝. 2012. 近50年来四川盆地降水日数的时空变化特征 [J]. 水土保持通报, 32(4): 65−70. doi: 10.13961/j.cnki.stbctb.2012.04.008Ren Xiaobin, Dong Zhibao, Zhou Zhengchao. 2012. Spatio−temporal variation of precipitation days of Sichuan Basin in nearly 50 years [J]. Bulletin of Soil and Water Conservation (in Chinese), 32(4): 65−70. doi: 10.13961/j.cnki.stbctb.2012.04.008 [24] 沈沛丰, 张耀存. 2011. 四川盆地夏季降水日变化的数值模拟 [J]. 高原气象, 30(4): 860−868.Shen Peifeng, Zhang Yaocun. 2011. Numerical simulation of diurnal variation of summer precipitation in Sichuan Basin [J]. Plateau Meteorology (in Chinese), 30(4): 860−868. [25] 唐红玉, 顾建峰, 俞胜宾, 等. 2011. 西南地区降水日变化特征分析 [J]. 高原气象, 30(2): 376−384.Tang Hongyu, Gu Jianfeng, Yu Shengbin, et al. 2011. Analysis on diurnal variation of precipitation in Southwest China [J]. Plateau Meteorology (in Chinese), 30(2): 376−384. [26] Ueno K, Takano S, Kusaka H. 2009. Nighttime precipitation induced by a synoptic-scale convergence in the central Tibetan Plateau [J]. J. Meteor. Soc. Japan, 87(3): 459−472. doi: 10.2151/jmsj.87.459 [27] 王夫常, 宇如聪, 陈昊明, 等. 2011. 我国西南部降水日变化特征分析 [J]. 暴雨灾害, 30(2): 117−121. doi: 10.3969/j.issn.1004-9045.2011.02.003Wang Fuchang, Yu Rucong, Chen Haoming, et al. 2011. The characteristics of rainfall diurnal variation over the southwestem China [J]. Torrential Rain and Disasters (in Chinese), 30(2): 117−121. doi: 10.3969/j.issn.1004-9045.2011.02.003 [28] 魏凤英. 2007. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 27–38Wei Fengying. 2007. Modern Climate Statistics Diagnosis and Prediction Technology (in Chinese) [M]. 2nd ed. Beijing: China Meteorological Press, 27–38. [29] 韦志刚, 黄荣辉, 董文杰. 2003. 青藏高原气温和降水的年际和年代际变化 [J]. 大气科学, 27(2): 157−170. doi: 10.3878/j.issn.1006-9895.2003.02.03Wei Zhigang, Huang Ronghui, Dong Wenjie. 2003. Interannual and interdecadal variations of air temperature and precipitation over the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(2): 157−170. doi: 10.3878/j.issn.1006-9895.2003.02.03 [30] 温煜华, 吕越敏, 李宗省. 2021. 近60 a祁连山极端降水变化研究 [J]. 干旱区地理, 44(5): 1199−1212. doi: 10.12118/j.issn.1000–6060.2021.05.01Wen Yuhua, Lü Yuemin, Li Zongxing. 2021. Changes of extreme precipitation in Qilian Mountains in recent 60 years [J]. Arid Land Geography (in Chinese), 44(5): 1199−1212. doi: 10.12118/j.issn.1000–6060.2021.05.01 [31] 徐裕华. 1991. 西南气候[M]. 北京: 气象出版社, 5–14Xu Yuhua. 1991. Climate of Southwest China (in Chinese) [M]. Beijing: China Meteorological Press, 5–14. [32] 严中伟, 杨赤. 2000. 近几十年中国极端气候变化格局 [J]. 气候与环境研究, 5(3): 267−272. doi: 10.3969/j.issn.1006-9585.2000.03.005Yan Zhongwei, Yang Chi. 2000. Geographic patterns of extreme climate changes in China during 1951−1997 [J]. Climatic and Environmental Research (in Chinese), 5(3): 267−272. doi: 10.3969/j.issn.1006-9585.2000.03.005 [33] 杨素英, 孙凤华, 马建中. 2008. 增暖背景下中国东北地区极端降水事件的演变特征 [J]. 地理科学, 28(2): 224−228. doi: 10.3969/j.issn.1000-0690.2008.02.017Yang Suying, Sun Fenghua, Ma Jianzhong. 2008. Evolvement of precipitation extremes in Northeast China on the background of climate warming [J]. Scientia Geographica Sinica (in Chinese), 28(2): 224−228. doi: 10.3969/j.issn.1000-0690.2008.02.017 [34] 于俊伟, 吴战平, 高秋沙. 2010. 贵州的夜雨特征[J]. 贵州气象, 34(2): 13–14, 17Yu Junwei, Wu Zhanping, Gao Qiusha. 2010. Night rain features in Guizhou [J]. Journal of Guizhou Meteorology (in Chinese), 34(2): 13–14, 17. doi: 10.3969/j.issn.1003-6598.2010.02.003 [35] 宇如聪, 曾庆存, 彭贵康, 等. 1994. "雅安天漏"研究Ⅱ. 数值预报试验 [J]. 大气科学, 18(5): 535−551. doi: 10.3878/j.issn.1006-9895.1994.05.04Yu Rucong, Zeng Qingcun, Peng Guikang, et al. 1994. Research on “Ya-An-Tian-Lou”. Part II: Numerical trial-forecasting [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18(5): 535−551. doi: 10.3878/j.issn.1006-9895.1994.05.04 [36] 郁淑华, 何光碧, 滕家谟. 1997. 青藏高原切变线对四川盆地西部突发性暴雨影响的数值试验 [J]. 高原气象, 16(3): 306−311. doi: 10.3321/j.issn:1000-0534.1997.03.011Yu Shuhua, He Guangbi, Teng Jiamo. 1997. The numerical experiments of influence of shear line over Qinhai–Xizang Plateau on a sharp heavy rain in West Sichuan basin [J]. Plateau Meteorology (in Chinese), 16(3): 306−311. doi: 10.3321/j.issn:1000-0534.1997.03.011 [37] 翟盘茂, 王萃萃, 李威. 2007. 极端降水事件变化的观测研究 [J]. 气候变化研究进展, 3(3): 144−148. doi: 10.3969/j.issn.1673-1719.2007.03.004Zhai Panmao, Wang Cuicui, Li Wei. 2007. A review on study of change in precipitation extremes [J]. Advances in Climate Change Research (in Chinese), 3(3): 144−148. doi: 10.3969/j.issn.1673-1719.2007.03.004 [38] 翟盘茂, 邹旭恺. 2005. 1951~2003年中国气温和降水变化及其对干旱的影响 [J]. 气候变化研究进展, 1(1): 16−18. doi: 10.3969/j.issn.1673-1719.2005.01.004Zhai Panmao, Zou Xukai. 2005. Changes in temperature and precipitation and their impacts on drought in China during 1951−2003 [J]. Advances in Climate Change Research (in Chinese), 1(1): 16−18. doi: 10.3969/j.issn.1673-1719.2005.01.004 [39] 张核真, 唐小萍, 普布卓玛. 2010. 近46年西藏高原昼夜降水变化趋势 [J]. 气象科技, 38(2): 205−208. doi: 10.3969/j.issn.1671-6345.2010.02.012Zhang Hezhen, Tang Xiaoping, Pubuzhuoma. 2010. Trends of day/night precipitation in Tibet Plateau in recent 46 years [J]. Meteorological Science and Technology (in Chinese), 38(2): 205−208. doi: 10.3969/j.issn.1671-6345.2010.02.012 [40] 张杰, 李栋梁, 王文. 2008. 夏季风期间青藏高原地形对降水的影响 [J]. 地理科学, 28(2): 235−240. doi: 10.3969/j.issn.1000-0690.2008.02.019Zhang Jie, Li Dongliang, Wang Wen. 2008. Influence of terrain on precipitation in Qinghai–Tibet Plateau during summer monsoon [J]. Scientia Geographica Sinica (in Chinese), 28(2): 235−240. doi: 10.3969/j.issn.1000-0690.2008.02.019 [41] 张磊, 缪启龙. 2007. 青藏高原近40年来的降水变化特征 [J]. 干旱区地理, 30(2): 240−246. doi: 10.3321/j.issn:1000-6060.2007.02.014Zhang Lei, Miao Qilong. 2007. Precipitation changes in the Tibetan Plateau during the last four decades [J]. Arid Land Geography (in Chinese), 30(2): 240−246. doi: 10.3321/j.issn:1000-6060.2007.02.014 [42] Zhang Xinping, Shi Yafeng, Yao Tandong. 1995. Variational features of precipitation δ18O in Northeast Qinghai–Tibet Plateau [J]. Science in China (Series B), 38(7): 854−864. doi: 10.1360/yb1995-38-7-854 [43] 周长艳, 肖安, 高文良. 2015. 2004~2013年"雨城"雅安的降水日变化特征分析 [J]. 冰川冻土, 37(6): 1524−1533. doi: 10.7522/j.issn.1000-0240.2015.0169Zhou Changyan, Xiao An, Gao Wenliang. 2015. Analysis of the diurnal variation features of precipitation in Ya'an as the rainy city, 2004−2013 [J]. Journal of Glaciology and Geocryology (in Chinese), 37(6): 1524−1533. doi: 10.7522/j.issn.1000-0240.2015.0169 [44] 周秋雪, 李跃清, 蒋兴文, 等. 2016. “雅安天漏”降水变化气候特征的分析 [J]. 自然资源学报, 31(2): 343−353. doi: 10.11849/zrzyxb.20141350Zhou Qiuxue, Li Yueqing, Jiang Xingwen, et al. 2016. Analysis on the climatic characteristics of the precipitation variations at “Ya'an Sky–leakage” [J]. Journal of Natural Resources (in Chinese), 31(2): 343−353. doi: 10.11849/zrzyxb.20141350 -