高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污染源反演对重点城市群夏季O3模拟的改进效果评估

宋雅婷 唐晓 孔磊 罗雪纯 王瑶 罗洪艳 吴煌坚 王自发

宋雅婷, 唐晓, 孔磊, 等. 2023. 污染源反演对重点城市群夏季O3模拟的改进效果评估[J]. 气候与环境研究, 28(1): 61−73 doi: 10.3878/j.issn.1006-9585.2022.21199
引用本文: 宋雅婷, 唐晓, 孔磊, 等. 2023. 污染源反演对重点城市群夏季O3模拟的改进效果评估[J]. 气候与环境研究, 28(1): 61−73 doi: 10.3878/j.issn.1006-9585.2022.21199
SONG Yating, TANG Xiao, KONG Lei, et al. 2023. Improvement of the Summer Ozone Simulation over Key Cite-Clusters in China through Emission Inversion Method [J]. Climatic and Environmental Research (in Chinese), 28 (1): 61−73 doi: 10.3878/j.issn.1006-9585.2022.21199
Citation: SONG Yating, TANG Xiao, KONG Lei, et al. 2023. Improvement of the Summer Ozone Simulation over Key Cite-Clusters in China through Emission Inversion Method [J]. Climatic and Environmental Research (in Chinese), 28 (1): 61−73 doi: 10.3878/j.issn.1006-9585.2022.21199

污染源反演对重点城市群夏季O3模拟的改进效果评估

doi: 10.3878/j.issn.1006-9585.2022.21199
基金项目: 国家自然科学基金项目 41875164、92044303,中科院战略性先导科技专项 XDA19040201
详细信息
    作者简介:

    宋雅婷,女,1997年出生,硕士研究生,主要从事大气污染数值模拟研究。E-mail: 1991836083@qq.com

    通讯作者:

    唐晓,E-mail: tangxiao@mail.iap.ac.cn

  • 中图分类号: P402

Improvement of the Summer Ozone Simulation over Key Cite-Clusters in China through Emission Inversion Method

Funds: National Natural Science Foundation of China (Grants 41875164 and 92044303), Strategic Leading Science and Technology Project of Chinese Academy of Sciences (Grant XDA19040201)
  • 摘要: 在嵌套网格空气质量预报模式系统(NAQPMS)的基础上,采用污染源反演方法优化以中国多尺度排放清单(MEIC)为主的先验排放清单中臭氧(O3)前体物排放量估计。分析时段为2019年6~8月,重点评估了污染源反演对我国“2+26”城市、长三角、珠三角、成渝4个重点城市群O3模拟的改进效果。评估结果表明,污染源反演获得的“2+26”城市、长三角、珠三角的氮氧化物(NOx)排放速率整体低于先验清单的排放速率约0.6 μg m−2 s−1,但反演的挥发性有机物(VOCs)排放速率在“2+26”城市整体上高于先验清单的排放速率约0.5 μg m−2 s−1。利用反演的NOx和VOCs排放量和NAQPMS模式对4个城市群O3进行模拟,发现反演排放数据可以显著改进夏季O3模拟性能,使得O3日最大8小时平均值(MDA8-O3)模拟的均方根误差(RMSE)从40~60 μg/m³降低至20~30 μg/m³,模拟值与观测值的相关系数从0.6~0.7提升至0.8以上,模拟和观测O3浓度日变化峰值差异从2~50 μg/m³缩小到2~20 μg/m³。本文结果表明基于地面观测数据的污染源反演可以有效改进重点城市群的O3模拟性能,反演的O3前体物排放量与先验清单的排放量差异可为先验清单效验和评估提供参考。
  • 图  1  本文所选择的城市群分布与观测站点(绿色圆点)

    Figure  1.  Distribution of urban agglomerations and observation sites (green dots) in this study

    图  2  2019年6~8月(a)长三角、(b)“2+26”城市、(c)珠三角和(d)成渝先验模拟(黑线)、反演模拟(灰线)与观测(圆点)的O3日最大8小时滑动平均浓度(MDA8-O3)逐日变化

    Figure  2.  A priori simulation (black line), inversion simulation (grey line), and observation (dot) of the daily variation of the maximum ozone day 8-h moving average (MDA8-O3) in the (a) Yangtze River Delta, (b) “2+26” Cities, (c) Pearl River Delta, and (d) Chengdu−Chongqing from Jun to Aug 2019

    图  3  2019年6~8月源反演前后(a)NOx和(b)VOCs的站点排放速率变化(源反演后减去源反演前),这里的VOCs包含了C2H6、HCHO、ALD2、PAR、ETH、OLET、OLEI、TOL、XYL、ISOP (Zaveri and Peters, 1999

    Figure  3.  Variations of (a) NOx and (b) VOCs in site emission rates before and after source inversion from Jun to Aug 2019 (value after inversion minus value before inversion), where VOCs include C2H6, HCHO, ALD2, PAR, ETH, OLET, OLEI, TOL, XYL, and ISOP (Zaveri and Peters, 1999)

    图  4  2019年6~8月(a)北京、(b)杭州、(c)广州和(d)重庆先验模拟(虚线)、反演模拟(实线)与观测(圆点为O3,三角为NO2)浓度的平均日变化

    Figure  4.  A priori simulation (dotted line), inversion simulation (solid line), and observation (dot for O3 and triangle for NO2) of mean diurnal variation in (a) Beijing, (b) Hangzhou, (c) Guangzhou, and (d) Chongqing from Jun to Aug 2019

    图  5  2019年6~8月“2+26”城市、长三角、珠三角和成渝的日间(浅色)、夜间(深色)O3浓度观测值和模式模拟值之间的(a)相关系数和(b)均方根误差(RMSE),基于O3浓度小时值计算

    Figure  5.  (a) Correlation coefficient and (b) root-mean-square error (RMSE) of daytime (lignt) and nocturnal (dark) O3 concentration between observations and simultions in the Yangtze River Delta, “2+26” Cities, Pearl River Delta, and Chengdu−Chongqing from Jun to Aug 2019. The calculation is based on the hourly O3 concentration

    表  1  本文在研究中涉及的城市群所包含的城市

    Table  1.   Cities of the urban agglomerations involved in the study

    城市群所含城市
    “2+26”城市安阳、保定、滨州、沧州、德州、邯郸、菏泽、鹤壁、衡水、济南、济宁、焦作、晋城、开封、廊坊、聊城、濮阳、阳泉、石家庄、太原、唐山、天津、新乡、邢台、长治、郑州、淄博、北京
    长三角上海、南京、无锡、常州、苏州、南通、盐城、扬州、镇江、泰州、杭州、宁波、嘉兴、湖州、绍兴、金华、舟山、台州、合肥、芜湖、马鞍山、铜陵、安庆、滁州、池州、宣城
    珠三角广州、佛山、肇庆、深圳、东莞、惠州、珠海、中山、江门
    成渝成都、重庆、自贡、泸州、德阳、绵阳、遂宁、内江、乐山、达州、南充、宜宾、雅安、资阳、眉山、广安
    下载: 导出CSV

    表  2  反演前的先验排放清单

    Table  2.   Prior emission inventory before source inversion

    清单名称参考文献
    HTAP v2.2全球人为源清单Janssens-Maenhout et al.(2015)
    GFED4生物质燃烧排放清单Randerson et al.(2017); van der Werf et al.(2010)
    MEGAN-MACC生物 VOC源排放清单Sindelarova et al.(2014)
    POET海洋 VOC 源排放清单Granier et al.(2005)
    NOx 土壤源排放清单Yan et al.(2003)
    NOx 闪电源排放清单Price et al.(1997)
    下载: 导出CSV

    表  3  基于2019年6~8月的“2+26”城市、长三角、珠三角和成渝MDA8-O3源反演前后模拟O3污染日数与观测O3污染日数的比值

    Table  3.   Ratio of simulated O3 polluted days to observed O3 polluted days before and after source inversion in “2+26” Cities, Yangtze River Delta, Pearl River Delta, and Chengdu−Chongqing from Jun to Aug 2019

    O3污染城市群比值(轻度污染)

    比值(中度污染及以上)

    源反演前源反演后源反演前源反演后
    “2+26”城市0.480.9800.63
    长三角0.470.740/
    珠三角0.5 1 //
    成渝0.830.92//
    注:比值越接近1,表示模式能够模拟出O3污染日的性能越高。“/”表示观测O3未达到这一污染等级。轻度污染时O3浓度为160~215 μg/m3,中度污染及以上>215 μg/m3
    下载: 导出CSV

    表  4  2019年6~8月“2+26”城市、长三角、珠三角和成渝模拟小时O3浓度观测值和模式模拟值之间的相关系数和均方根误差

    Table  4.   Correlation coefficient and RMSE of hourly O3 concentration between observations and simultions in the Yangtze River Delta, “2+26” Cities, Pearl River Delta, and Chengdu−Chongqing from Jun to Aug 2019

    O3污染城市群相关系数均方根误差/μg m−3
    源反演前源反演后源反演前源反演后
    “2+26”城市0.640.8260.237.2
    长三角0.610.8249.632.7
    珠三角0.720.8336.627.1
    成渝0.610.8 61.836.4
    下载: 导出CSV
  • [1] Akimoto H, Nagashima T, Li J, et al. 2019. Comparison of surface ozone simulation among selected regional models in MICS-Asia III—Effects of chemistry and vertical transport for the causes of difference [J]. Atmospheric Chemistry and Physics, 19(1): 603−615. doi: 10.5194/acp-19-603-2019
    [2] Almaraz M, Bai E, Wang C, et al. 2018. Agriculture is a major source of NOx pollution in California [J]. Science Advances, 4(1): eaao3477. doi: 10.1126/sciadv.aao3477
    [3] Bai L, Wang J Z, Ma X J, et al. 2018. Air pollution forecasts: An overview [J]. International Journal of Environmental Research and Public Health, 15(4): 780. doi: 10.3390/ijerph15040780
    [4] Brasseur G P, Hauglustaine D A, Walters S, et al. 1998. MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description [J]. J. Geophys. Res.: Atmos., 103(D21): 28265−28289. doi: 10.1029/98jd02397
    [5] Chen S Y, Wang H C, Lu K D, et al. 2020. The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity [J]. Atmos. Environ., 242: 117801. doi: 10.1016/j.atmosenv.2020.117801
    [6] Chen K Y, Wang P F, Zhao H, et al. 2021. Summertime O3 and related health risks in the North China Plain: A modeling study using two anthropogenic emission inventories [J]. Atmos. Environ., 246: 118087. doi: 10.1016/j.atmosenv.2020.118087
    [7] Cheng P Y, Pour-Biazar A, White A T, et al. 2022. Improvement of summertime surface ozone prediction by assimilating Geostationary Operational Environmental Satellite cloud observations [J]. Atmos. Environ., 268: 118751. doi: 10.1016/j.atmosenv.2021.118751
    [8] Constantinescu E M, Sandu A, Chai T F, et al. 2007. Assessment of ensemble-based chemical data assimilation in an idealized setting [J]. Atmos. Environ., 41(1): 18−36. doi: 10.1016/j.atmosenv.2006.08.006
    [9] Conti G O, Heibati B, Kloog I, et al. 2017. A review of AirQ Models and their applications for forecasting the air pollution health outcomes [J]. Environmental Science and Pollution Research, 24(7): 6426−6445. doi: 10.1007/s11356-016-8180-1
    [10] Diao B D, Zeng K F, Su P D, et al. 2016. Temporal−spatial distribution characteristics of provincial industrial NOx emissions and driving factors in China from 2006 to 2013 [J]. Resources Science, 38(9): 1768−1779.
    [11] Ding J Y, Miyazaki K, Van Der A R J, et al. 2017. Intercomparison of NOx emission inventories over East Asia [J]. Atmospheric Chemistry and Physics, 17(16): 10125−10141. doi: 10.5194/acp-17-10125-2017
    [12] Finlayson-Pitts B J, Pitts J N Jr. 1997. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles [J]. Science, 276(5315): 1045−1052. doi: 10.1126/science.276.5315.1045
    [13] Fortems-Cheiney A, Pison I, Broquet G, et al. 2021. Variational regional inverse modeling of reactive species emissions with PYVAR-CHIMERE-v2019 [J]. Geoscientific Model Development, 14(5): 2939−2957. doi: 10.5194/gmd-14-2939-2021
    [14] Granier C, Lamarque J, Mieville A, et al. 2005. POET, a database of surface emissions of ozone precursors [EB/OL]. http://www.aero.jussieu.fr/projet/ACCENT/POET.php.[2021-02-18]
    [15] Gu D S, Wang Y H, Yin R, et al. 2016. Inverse modelling of NOx emissions over eastern China: Uncertainties due to chemical non-linearity [J]. Atmospheric Measurement Techniques, 9(10): 5193−5201. doi: 10.5194/amt-9-5193-2016
    [16] Guerrero V V U, de Morais M V B, de Freitas E D, et al. 2021. Numerical study of meteorological factors for tropospheric nocturnal ozone increase in the metropolitan area of São Paulo [J]. Atmosphere, 12(2): 287. doi: 10.3390/atmos12020287
    [17] 郭文凯, 李光耀, 陈冰, 等. 2021. 兰州市高分辨率人为源排放清单建立及在WRF-Chem中应用评估 [J]. 环境科学, 42(2): 634−642. doi: 10.13227/j.hjkx.202007088

    Guo Wenkai, Li Guangyao, Chen Bin, et al. 2021. Establishment of a high-resolution anthropogenic emission inventory and its evaluation using the WRF-Chem model for Lanzhou [J]. Environmental Science (in Chinese), 42(2): 634−642. doi: 10.13227/j.hjkx.202007088
    [18] Guo X R, Shen Y Q, Liu W W, et al. 2021. Estimation and prediction of industrial VOC emissions in Hebei Province, China [J]. Atmosphere, 12(5): 530. doi: 10.3390/atmos12050530
    [19] Hauglustaine D A, Brasseur G P, Walters S, et al. 1998. MOZART, a global chemical transport model for ozone and related chemical tracers: 2. Model results and evaluation [J]. J. Geophys. Res.: Atmos., 103(D21): 28291−28335. doi: 10.1029/98jd02398
    [20] Hong C P, Zhang Q, He K B, et al. 2017. Variations of China’s emission estimates: Response to uncertainties in energy statistics [J]. Atmospheric Chemistry and Physics, 17(2): 1227−1239. doi: 10.5194/acp-17-1227-2017
    [21] Jaffe D A, Honrath R E, Zhang L Z, et al. 1996. Measurements of NO, NOy, CO and O3 and estimation of the ozone production rate at Oki Island, Japan, during PEM-West [J]. J. Geophys. Res.: Atmos., 101(D1): 2037−2048. doi: 10.1029/95jd01699
    [22] Janssens-Maenhout G, Crippa M, Guizzardi D, et al. 2015. HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution [J]. Atmospheric Chemistry and Physics, 15(19): 11411−11432. doi: 10.5194/acp-15-11411-2015
    [23] Jiang M Q, Lu K D, Su R, et al. 2018. Ozone formation and key VOCs in typical Chinese city clusters [J]. Chinese Science Bulletin, 63(12): 1130−1141. doi: 10.1360/N972017-01241
    [24] Jiang L, Chen Y, Zhou H F, et al. 2020. NOx emissions in China: Temporal variations, spatial patterns and reduction potentials [J]. Atmospheric Pollution Research, 11(9): 1473−1480. doi: 10.1016/j.apr.2020.06.003
    [25] Jimenez P, Baldasano J M, Dabdub D. 2003. Comparison of photochemical mechanisms for air quality modeling [J]. Atmos. Environ., 37(30): 4179−4194. doi: 10.1016/s1352-2310(03)00567-3
    [26] Khalil M A K, Butenhoff C L, Harrison R M. 2018. Ozone balances in urban Saudi Arabia [J]. npj Climate and Atmospheric Science, 1: 27. doi: 10.1038/s41612-018-0034-8
    [27] 孔磊. 2021. 基于同化反演的中国空气质量变化趋势及其驱动力研究[D]. 中国科学院大气物理研究所博士学位论文, 95–97.

    Kong Lei. 2021. Variation trend and driving force of air quality in China based on assimilation inversion [D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 95–97.
    [28] Kong L, Tang X, Zhu J, et al. 2019. Improved inversion of monthly ammonia emissions in China based on the Chinese ammonia monitoring network and ensemble kalman filter [J]. Environ. Sci. Technol., 53(21): 12529−12538. doi: 10.1021/acsest.9b02701
    [29] Kong L, Tang X, Zhu J, et al. 2021. A 6-year-long (2013–2018) high-resolution air quality reanalysis dataset in China based on the assimilation of surface observations from CNEMC [J]. Earth System Science Data, 13(2): 529−570. doi: 10.5194/essd-13-529-2021
    [30] Li M, Zhang Q, Zheng B, et al. 2019. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential [J]. Atmospheric Chemistry and Physics, 19(13): 8897−8913. doi: 10.5194/acp-19-8897-2019
    [31] Li K, Jacob D J, Shen L, et al. 2020. Increases in surface ozone pollution in China from 2013 to 2019: Anthropogenic and meteorological influences [J]. Atmospheric Chemistry and Physics, 20(19): 11423−11433. doi: 10.5194/acp-20-11423-2020
    [32] Li R Y, Xu M Q, Li M C, et al. 2021. Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis [J]. Atmospheric Chemistry and Physics, 21(20): 15631−15646. doi: 10.5194/acp-21-15631-2021
    [33] Liu F, Beirle S, Zhang Q, et al. 2017. NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015 [J]. Atmospheric Chemistry and Physics, 17(15): 9261−9275. doi: 10.5194/acp-17-9261-2017
    [34] Liu J, Yin H, Tang X, et al. 2021. Transition in air pollution, disease burden and health cost in China: A comparative study of long-term and short-term exposure [J]. Environmental Pollution, 277: 116770. doi: 10.1016/j.envpol.2021.116770
    [35] Lu H X, Lyu X P, Cheng H R, et al. 2019. Overview on the spatial−temporal characteristics of the ozone formation regime in China [J]. Environmental Science: Processes and Impacts, 21(6): 916−929. doi: 10.1039/c9em00098d
    [36] Lu K D, Guo S, Tan Z F, et al. 2019. Exploring atmospheric free-radical chemistry in China: The self-cleansing capacity and the formation of secondary air pollution [J]. National Science Review, 6(3): 579−594. doi: 10.1093/nsr/nwy073
    [37] Lu X, Zhang L, Wang X L, et al. 2020. Rapid increases in warm-season surface ozone and resulting health impact in China Since 2013 [J]. Environmental Science and Technology Letters, 7(4): 240−247. doi: 10.1021/acs.estlett.0c00171
    [38] Ma Z Q, Zhang X L, Xu J, et al. 2011. Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn [J]. Journal of Environmental Sciences, 23(8): 1316−1324. doi: 10.1016/s1001-0742(10)60557-8
    [39] 马明月, 杨宏, 潘峰, 等. 2021. MEIC清单对兰州市西固区O3污染预测的适用性研究 [J]. 环境保护科学, 47(2): 136−144. doi: 10.16803/j.cnki.issn.1004-6216.2021.02.024

    Ma Mingyue, Yang Hong, Pan Feng, et al. 2021. Applicability of MEIC to predict ozone pollution in Xigu District of Lanzhou [J]. Environmental Protection Science (in Chinese), 47(2): 136−144. doi: 10.16803/j.cnki.issn.1004-6216.2021.02.024
    [40] Maji K J, Namdeo A. 2021. Continuous increases of surface ozone and associated premature mortality growth in China during 2015–2019 [J]. Environmental Pollution, 269: 116183. doi: 10.1016/j.envpol.2020.116183
    [41] Mereu S, Gerosa G, Finco A, et al. 2009. Improved sapflow methodology reveals considerable night-time ozone uptake by Mediterranean species [J]. Biogeosciences, 6(12): 3151−3162. doi: 10.5194/bg-6-3151-2009
    [42] Mo Z W, Shao M, Lu S H. 2016. Compilation of a source profile database for hydrocarbon and OVOC emissions in China [J]. Atmos. Environ., 143: 209−217. doi: 10.1016/j.atmosenv.2016.08.025
    [43] Ou J M, Yuan Z B, Zheng J Y, et al. 2016. Ambient ozone control in a photochemically active region: Short-term despiking or long-term attainment? [J]. Environ. Sci. Technol., 50(11): 5720−5728. doi: 10.1021/acs.est.6b00345
    [44] Qu Z, Henze D K, Li C, et al. 2019. SO2 emission estimates using OMI SO2 retrievals for 2005–2017 [J]. J. Geophys. Res.: Atmos., 124(14): 8336−8359. doi: 10.1029/2019JD030243
    [45] Price C, Penner J, Prather M. 1997. NOx from lightning. 1. Global distribution based on lightning physics [J]. J. Geophys. Res.: Atmos., 102(D5): 5929−5941. doi: 10.1029/96jd03504
    [46] Randerson J T, van der Werf G R, Giglio L, et al. 2017. Global Fire Emissions Database, Version 4.1 (GFEDv4) [M]. Oak Ridge, Tennessee, USA: ORNL DAAC. doi: 10.3334/ORNLDAAC/1293
    [47] Ryan W F. 2016. The air quality forecast rote: Recent changes and future challenges [J]. Journal of the Air and Waste Management Association, 66(6): 576−596. doi: 10.1080/10962247.2016.1151469
    [48] Sakov P, Oke P R. 2008. A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters [J]. Tellus A: Dynamic Meteorology and Oceanography, 60(2): 361−371. doi: 10.1111/j.1600-0870.2007.00299.x
    [49] Shah V, Daniel J, Li K, et al. 2020. Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China [J]. Atmospheric Chemistry and Physics, 20(3): 1483−1495. doi: 10.5194/acp-20-1483-2020
    [50] Shen L, Jacob D J, Zhu L, et al. 2019. The 2005–2016 trends of formaldehyde columns over China observed by satellites: Increasing anthropogenic emissions of volatile organic compounds and decreasing agricultural fire emissions [J]. Geophys. Res. Lett., 46(8): 4468−4475. doi: 10.1029/2019gl082172
    [51] Sillman S. 1999. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments [J]. Atmos. Environ., 33(12): 1821−1845. doi: 10.1016/s1352-2310(98)00345-8
    [52] Sindelarova K, Granier C, Bouarar I, et al. 2014. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years [J]. Atmospheric Chemistry and Physics, 14(17): 9317−9341. doi: 10.5194/acp-14-9317-2014
    [53] Sun W, Shao M, Granier C, et al. 2018. Long-term trends of anthropogenic SO2, NOx, CO, and NMVOCs emissions in China [J]. Earth’s Future, 6(8): 1112−1133. doi: 10.1029/2018ef000822
    [54] Tang X, Zhu J, Wang Z F, et al. 2011. Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions [J]. Atmospheric Chemistry and Physics, 11(24): 12901−12916. doi: 10.5194/acp-11-12901-2011
    [55] 唐晓, 朱江, 王自发, 等. 2013. 基于集合卡尔曼滤波的区域O3资料同化试验 [J]. 环境科学学报, 33(3): 796−805. doi: 10.13671/j.hjkxxb.2013.03.026

    Tang Xiao, Zhu Jiang, Wang Zifa, et al. 2013. Regional ozone data assimilation experiment based on ensemble Kalman filter [J]. Acta Scientiae Circumstantiae (in Chinese), 33(3): 796−805. doi: 10.13671/j.hjkxxb.2013.03.026
    [56] Tang X, Zhu J, Wang Z F, et al. 2016. Limitations of ozone data assimilation with adjustment of NOx emissions: Mixed effects on NO2 forecasts over Beijing and surrounding areas [J]. Atmospheric Chemistry and Physics, 16(10): 6395−6405. doi: 10.5194/acp-16-6395-2016
    [57] Tao Z N, Chin M, Gao M, et al. 2020. Evaluation of NU-WRF model performance on air quality simulation under various model resolutions— An investigation within the framework of MICS-Asia Phase III [J]. Atmospheric Chemistry and Physics, 20(4): 2319−2339. doi: 10.5194/acp-20-2319-2020
    [58] Van der Werf G R, Randerson J T, Giglio L, et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009) [J]. Atmospheric Chemistry and Physics, 10(23): 11707−11735. doi: 10.5194/acp-10-11707-2010
    [59] Wang Z F, Sha W M, Ueda H. 2000. Numerical modeling of pollutant transport and chemistry during a high-ozone event in northern Taiwan [J]. Tellus B: Chemical and Physical Meteorology, 52(5): 1189−1205. doi: 10.1034/j.1600-0889.2000.01064.x
    [60] Wang Z F, Akimoto H, Uno I. 2002. Neutralization of soil aerosol and its impact on the distribution of acid rain over East Asia: Observations and model results [J]. J. Geophys. Res.: Atmos., 107(D19): 4389. doi: 10.1029/2001jd001040
    [61] Wang Y, Wang J, Xu X G, et al. 2020. Inverse modeling of SO2 and NOx emissions over China using multisensor satellite data— Part 1: Formulation and sensitivity analysis [J]. Atmospheric Chemistry and Physics, 20(11): 6631−6650. doi: 10.5194/acp-20-6631-2020
    [62] Wang Y T, Zhao Y, Zhang L, et al. 2020. Modified regional biogenic VOC emissions with actual ozone stress and integrated land cover information: A case study in Yangtze River Delta, China [J]. Science of the Total Environment, 727: 138703. doi: 10.1016/j.scitotenv.2020.138703
    [63] 魏巍, 王书肖, 郝吉明. 2011. 中国人为源VOC排放清单不确定性研究 [J]. 环境科学, 32(2): 305−312. doi: 10.13227/j.hjkx.2011.02.021

    Wei Wei, Wang Shuxiao, Hao Jiming. 2011. Uncertainty analysis of emission inventory for volatile organic compounds from anthropogenic sources in China [J]. Environmental Science (in Chinese), 32(2): 305−312. doi: 10.13227/j.hjkx.2011.02.021
    [64] Wu R R, Xie S D. 2017. Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds [J]. Environ. Sci. Technol., 51(5): 2574−2583. doi: 10.1021/acs.est.6b03634
    [65] Xu J, Ma J Z, Zhang X L, et al. 2011. Measurements of ozone and its precursors in Beijing during summertime: Impact of urban plumes on ozone pollution in downwind rural areas [J]. Atmospheric Chemistry and Physics, 11(23): 12241−12252. doi: 10.5194/acp-11-12241-2011
    [66] Yan X Y, Akimoto H, Ohara T. 2003. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia [J]. Global Change Biology, 9(7): 1080−1096. doi: 10.1046/j.1365-2486.2003.00649.x
    [67] Yin S S, Zheng J Y, Lu Q, et al. 2015. A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta region, China [J]. Science of the Total Environment, 514: 426−438. doi: 10.1016/j.scitotenv.2015.01.088
    [68] Zaveri R A, Peters L K. 1999. A new lumped structure photochemical mechanism for large-scale applications [J]. J. Geophys. Res.: Atmos., 104(D23): 30387−30415. doi: 10.1029/1999jd900876
    [69] Zhang J F, Wei Y J, Wang Z F. 2019. Ozone pollution: A major health hazard worldwide [J]. Frontiers in Immunology, 10: 2518. doi: 10.3389/fimmu.2019.02518
    [70] Zhang Y, Bocquet M, Mallet V, et al. 2012. Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects [J]. Atmos. Environ., 60: 656−676. doi: 10.1016/j.atmosenv.2012.02.041
    [71] 张远航, 陈长虹, 何建军, 等. 2020. 中国大气臭氧污染防治蓝皮书(2020年)[M]. 中国环境科学学会臭氧污染控制专业委员会, 2(2): 12−16.

    Zhang Yuanhang, Chen Changhong, He Jianjun, et al. 2020. Blue Book on Ozone Pollution Prevention and Control in China (2020) (in Chinese) [M]. Chinese Society for Environmental Sciences Ozone Pollution Control Professional Committee, 2(2): 12−16.
    [72] Zhao T Y, Markevych I, Romanos M, et al. 2018. Ambient ozone exposure and mental health: A systematic review of epidemiological studies [J]. Environ. Res., 165: 459−472. doi: 10.1016/j.envres.2018.04.015
    [73] Zheng C H, Shen J L, Zhang Y X, et al. 2017. Quantitative assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties, and projection [J]. Atmos. Environ., 150: 116−125. doi: 10.1016/j.atmosenv.2016.11.023
    [74] Zhou G Q, Xu J M, Xie Y, et al. 2017. Numerical air quality forecasting over eastern China: An operational application of WRF-Chem [J]. Atmos. Environ., 153: 94−108. doi: 10.1016/j.atmosenv.2017.01.020
    [75] Zhu S P, Kinnon M M, Shaffer B P, et al. 2019. An uncertainty for clean air: Air quality modeling implications of underestimating VOC emissions in urban inventories [J]. Atmos. Environ., 211: 256−267. doi: 10.1016/j.atmosenv.2019.05.019
    [76] Zoran M A, Savastru R S, Savastru D M, et al. 2020. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy [J]. Science of the Total Environment, 740: 140005. doi: 10.1016/j.scitotenv.2020.140005
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  28
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2023-01-25

目录

    /

    返回文章
    返回