高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PML-V2模型和站点观测数据的植被水利用率及其趋势差异分析

李淑津 袁华 孔冬冬 董文宗 黄丽娜 戴永久

李淑津, 袁华, 孔冬冬, 等. 2023. 基于PML-V2模型和站点观测数据的植被水利用率及其趋势差异分析[J]. 气候与环境研究, 28(1): 89−102 doi: 10.3878/j.issn.1006-9585.2022.22009
引用本文: 李淑津, 袁华, 孔冬冬, 等. 2023. 基于PML-V2模型和站点观测数据的植被水利用率及其趋势差异分析[J]. 气候与环境研究, 28(1): 89−102 doi: 10.3878/j.issn.1006-9585.2022.22009
LI Shujin, YUAN Hua, KONG Dongdong, et al. 2023. Difference Analyses in Vegetation Water Use Efficiency and Their Trends Based on the PML-V2 Model and Site Observations [J]. Climatic and Environmental Research (in Chinese), 28 (1): 89−102 doi: 10.3878/j.issn.1006-9585.2022.22009
Citation: LI Shujin, YUAN Hua, KONG Dongdong, et al. 2023. Difference Analyses in Vegetation Water Use Efficiency and Their Trends Based on the PML-V2 Model and Site Observations [J]. Climatic and Environmental Research (in Chinese), 28 (1): 89−102 doi: 10.3878/j.issn.1006-9585.2022.22009

基于PML-V2模型和站点观测数据的植被水利用率及其趋势差异分析

doi: 10.3878/j.issn.1006-9585.2022.22009
基金项目: 国家自然科学基金 42075160、41730962,国家重点研发计划项目 2017YFA0604300
详细信息
    作者简介:

    李淑津,女,1994年出生,硕士研究生,主要从事植被水利用率研究。E-mail: 260065053@qq.com

    通讯作者:

    袁华,E-mail: yuanh25@mail.sysu.edu.cn

  • 中图分类号: P463

Difference Analyses in Vegetation Water Use Efficiency and Their Trends Based on the PML-V2 Model and Site Observations

Funds: National Natural Science Foundation of China (Grants 42075160 and 41730962),National Key Research and Development Program of China (Grant 2017YFA0604300)
  • 摘要: 运用基于Penman-Monteith公式改进得到的模型PML-V2,结合12个FLUXNET站点及其对应的叶面积指数数据,进行蒸散发分离,进而计算并分析内禀水利用率(intrinsic water use efficiency, iWUE)和冠层水利用率(canopy water use efficiency, tWUE)的趋势差异。结果表明,在站点尺度上,两种植被水利用率的变化均存在不一致性。对于落叶阔叶林(deciduous broadleaf forests, DBF),iWUE的增幅比tWUE的增幅大,而在常绿针叶林(evergreen needleleaf forests, ENF)中则相反。在DBF中,冠层导度和蒸腾作用趋势的差异可在一定程度上解释两种植被水利用率的趋势差异。通过回归分析发现森林(包括DBF和ENF)的气温和大气CO2浓度的趋势对tWUE趋势的影响更大。研究结果表明,两种植被水利用率及其趋势存在差异。基于iWUE的研究结果并不能完全反映植被的实际水利用率变化程度,因此也不能全面反映植被与大气的相互作用。本文在站点尺度明确了全球气候变化背景下两种植被水利用率的趋势差异,有助于理解陆地生态系统与大气之间的相互作用,为合理有效地预测未来气候变化及陆地植被的演变提供有用的参考依据。
  • 图  1  落叶阔叶林(deciduous broadleaf forests, DBF)和常绿针叶林(evergreen needleleaf forests, ENF)的站点分布

    Figure  1.  Distributions of deciduous broadleaf forests (DBF) and evergreen needleleaf forests (ENF) sites

    图  2  12个站点蒸散发的观测值(Eo)与模拟值(Es)的7 d平均时间序列(每个分图的标题为站点ID及其植被覆盖类型;圆点表示观测值,线表示模拟值,其中${\overline{{E}_{\mathrm{o}}}}$Eo的平均值,${\overline{{E}_{\mathrm{s}}}}$Es的平均值)

    Figure  2.  Observation (Eo) and simulation (Es) 7-d average time series of evapotranspiration at 12 sites (the title of each plot is the site ID and its vegetation cover type, dots represent observed values and lines represent simulated values, ${\overline{{E}_{\mathrm{o}}}}$ is the mean of Eo and ${\overline{{E}_{\mathrm{s}}}}$ is the mean of Es)

    图  3  同图2,但为GPP的时间序列

    Figure  3.  Same as in Fig. 2, but for the time series of gross primary production (GPP)

    图  4  GPP和E的NSE值的对比(NSEE表示E的站点观测值与模拟值的NSE值,NSEGPP表示GPP的站点观测值与模拟值的NSE值):(a)DBF;(b)ENF

    Figure  4.  Comparison of NSE values of GPP and E, NSEE represents the NSE between station observation and simulation of E, and NSEGPP represents the NSE between station observation and simulation of GPP: (a) DBF; (b) ENF

    图  5  同图4,但为决定系数R2的散点图

    Figure  5.  Same as in Fig. 4, but for the scatter plot of the coefficient of determination (R2)

    图  6  DBF和ENF的内禀水利用率(iWUE)和冠层水利用率(tWUE)的趋势图。纵坐标表示各站点每年内禀水利用率的相对年变化率,粗红线为该植被类型各站点的趋势进行平均得到的平均趋势线,黑色线为每个站点的趋势线,蓝色散点表示各站点每年内禀水利用率的相对年变化率;左上角的小图为各站点内禀水利用率的趋势和频数分布图,红色虚线为用bootstrap自助法获取的平均趋势90%的置信区间:(a)DBF的iWUE;(b)ENF的iWUE;(c)DBF的tWUE;(d)ENF的tWUE

    Figure  6.  Trends of DBF and ENF’s intrinsic water use efficiency (iWUE) and canopy water use efficiency (tWUE). The vertical coordinates represent the relative annual change rate of iWUE at each site in each year. The thick red line represents the average of trends from stations with the same vegetation type. The black lines represent the trend lines of each station, and the blue scatter represents the relative annual change rate of iWUE at each station in each year. The upper left corner insert plot displays the trend and frequency distribution of iWUE at each station, and the red dotted line represents the 90% confidence interval of the average trend derived by the bootstrap method: (a) iWUE of DBF; (b) iWUE of ENF; (c) tWUE of DBF; (d) tWUE of ENF

    图  7  图6,但为总初级生产力(GPP)、冠层导度(Gc)和蒸腾作用(T)的趋势

    Figure  7.  Same as Fig. 6, but for the trend’s plot of GPP, canopy conductance (Gc) and transpiration (T)

    图  8  森林中各变量的平均趋势(纵坐标,表示各变量平均每年变化百分比)及其90%置信区间,图中包含7个变量:内禀水利用率(iWUE),冠层水利用率(tWUE),气温(Tavg),饱和水汽压差(VPD),大气CO2浓度(CO2),降水(Prcp),入射短波辐射(Rs)。森林中各变量的平均趋势由12个站点的趋势平均得到。图中误差棒为平均趋势90%的置信区间,由bootstrap自助法确定

    Figure  8.  Trend of each variable (vertical coordinate, which represents the average annual percentage change of each variable) in the forest and its 90% confidence interval. There are seven variables in the figures, which are intrinsic water use efficiency (iWUE), canopy water use efficiency (tWUE), air temperature (Tavg), the vapor pressure deficit (VPD), atmospheric carbon dioxide concentration (CO2), precipitation (Prcp), incoming shortwave radiation (Rs). The trend of each variable in the forest is calculated by averaging the trends of 12 stations. The error bars in the figures represent the 90% confidence interval of the mean trends, which are calculated using the bootstrap method

    图  9  内禀水利用率(iWUE)和冠层水利用率(tWUE)作为因变量和5个环境因子(横坐标)作为自变量进行的偏最小二乘回归得到的回归系数(纵坐标)分布(回归分析前已根据Z分数将自变量和因变量标准化,因此回归系数为无量纲量。n为回归分析样本量,*表示P值小于0.05,***表示P值小于0.001)

    Figure  9.  The intrinsic water use efficiency (iWUE) and canopy water use efficiency (tWUE) are dependent variables, whereas the five environmental factors are independent variables (horizontal ordinate). Using partial least squares regression to calculate the regression coefficient (vertical coordinate) of independent and dependent variables (the independent and dependent variables were standardized according to Z scores before regression analysis. Therefore, the regression coefficient is dimensionless. n in the figure represents the sample size of the regression analysis. * indicates a P-value less than 0.05 and *** indicates a P-value less than 0.001)

    表  1  北半球12个站点的地理及气象信息

    Table  1.   Geographic and meteorological information for 12 sites in the Northern Hemisphere

    站点IDIGBP(地表覆盖分类系统)起始年份结束年份纬度经度海拔/m年均温度/°C年降水量/mm
    DE-HaiDBF2000200951.0792°N10.4522°E4308.3720
    DE-LnfDBF2002201251.3282°N10.3678°E4516.96894.6
    DK-SorDBF2004201355.4859°N11.6446°E408.2660
    US-MMSDBF2000201439.3232°N86.4131°W27510.851032
    US-OhoDBF2005201341.5545°N83.8438°W23010.1849
    CA-TP4ENF2004201442.71012°N80.3574°W18481036
    DE-ThaENF2000201450.9626°N13.5652°E3858.2843
    FI-HyyENF2005201461.8474°N24.2948°E1813.8709
    IT-LavENF2004201445.9562°N11.2813°E13537.81291
    NL-LooENF2000201452.1666°N5.7436°E259.8786
    RU-FyoENF2000201256.4615°N32.9221°E2653.9711
    US-NR1ENF2006201240.0329°N105.5464°W30501.5800
    注:站点ID由国家简称和站点名字组成。
    下载: 导出CSV

    表  2  12个站点GPP和E的观测值与模拟值的均方根误差(RMSE)和偏差(Bias)

    Table  2.   Root-Mean-Squared Error (RMSE) and Bias of GPP and E between observations and simulations at 12 sites

    站点IDIGBP(地表覆盖分类系统)均方根误差偏差
    RMSEE/mm d−1RMSEGPP/g(C) m−2 d−1BiasE/mm d−1BiasGPP/g(C) m−2 d−1
    DE-HaiDBF0.302.020.030.35
    DE-LnfDBF0.311.550.040.36
    DK-SorDBF0.431.520.050.27
    US-MMSDBF0.501.820.170.40
    US-OhoDBF0.511.460.150.28
    CA-TP4ENF0.491.610.030.22
    DE-ThaENF0.311.140.020.10
    FI-HyyENF0.331.050.040.06
    IT-LavENF0.311.620.01−0.05
    NL-LooENF0.341.000.000.01
    RU-FyoENF0.511.520.030.03
    US-NR1ENF0.431.120.090.09
    下载: 导出CSV

    表  3  12个站点的冠层水利用率和内禀水利用率的Pearson相关系数以及经过t检验的p

    Table  3.   Pearson correlation coefficient and P-value after t-test calculated by iWUE and tWUE of 12 sites

    站点IDIGBP(地表覆盖分类系统)相关系数p站点IDIGBP(地表覆盖分类系统)相关系数p
    DE-HaiDBF−0.790.006DE-ThaENF−0.740.002
    DE-LnfDBF−0.840.008FI-HyyENF−0.940.002
    DK-SorDBF−0.690.087IT-LavENF−0.650.041
    US-MMSDBF−0.660.010NL-LooENF−0.90<0.001
    US-OhoDBF−0.790.034RU-FyoENF−0.590.127
    CA-TP4ENF−0.92<0.001US-NR1ENF−0.96<0.001
    下载: 导出CSV

    表  4  DBF和ENF中根据bootstrap自助法得到的GPP、冠层导度(Gc)和蒸腾作用(T)的平均趋势的正负统计值占比以及正负统计值均值

    Table  4.   Positive and negative statistical values of mean trends obtained by the bootstrap method and proportion and mean trends of GPP, canopy conductance (Gc), and transpiration (T) in DBF and ENF

    IGBP(地表覆盖分类系统)变量正统计值占比正统计值均值/a负统计值占比负统计值均值/a
    DBFGPP59.53%0.29%40.47%−0.30%
    Gc8.83%0.34%91.17%−1.12%
    T20.97%0.17%79.03%−0.34%
    ENFGPP80.78%0.78%19.22%−0.40%
    Gc76.59%0.62%23.41%−0.33%
    T77.90%0.66%22.10%−0.39%
    下载: 导出CSV
  • [1] Baldocchi D D, Verma S B, Anderson D E. 1987. Canopy photosynthesis and water-use efficiency in a deciduous forest [J]. J. Appl. Ecol., 24(1): 251−260. doi: 10.2307/2403802
    [2] Beer C, Ciais P, Reichstein M, et al. 2009. Temporal and among-site variability of inherent water use efficiency at the ecosystem level [J]. Global Biogeochemical Cycles, 23(2): GB2018. doi: 10.1029/2008gb003233
    [3] Bonan G. 2015. Ecological Climatology: Concepts and Applications (3rd ed.) [M]. Cambridge: Cambridge University Press, 254–256.
    [4] Cao L, Bala G, Caldeira K, et al. 2010. Importance of carbon dioxide physiological forcing to future climate change [J]. Proc. Natl. Acad. Sci. USA, 107(21): 9513−9518. doi: 10.1073/pnas.0913000107
    [5] Dekker S C, Groenendijk M, Booth B B B, et al. 2016. Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations [J]. Earth System Dynamics, 7(2): 525−33. doi: 10.5194/esd-7-525-2016
    [6] Eamus D. 1991. The interaction of rising CO2 and temperatures with water use efficiency [J]. Plant Cell Environ., 14(8): 843−852. doi: 10.1111/j.1365-3040.1991.tb01447.x
    [7] Fatichi S, Leuzinger S, Paschalis A, et al. 2016. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2 [J]. Proc. Natl. Acad. Sci. USA, 113(45): 12757−12762. doi: 10.1073/pnas.1605036113
    [8] Field C B, Jackson R B, Mooney H A. 1995. Stomatal responses to increased CO2: Implications from the plant to the global scale [J]. Plant Cell Environ., 18(10): 1214−1225. doi: 10.1111/j.1365-3040.1995.tb00630.x
    [9] Frank D C, Poulter B, Saurer M, et al. 2015. Water-use efficiency and transpiration across European forests during the Anthropocene [J]. Nature Climate Change, 5(6): 579−583. doi: 10.1038/nclimate2614
    [10] Gan R, Zhang Y Q, Shi H, et al. 2018. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems [J]. Ecohydrology, 11(5): e1974. doi: 10.1002/eco.1974
    [11] Gocic M, Trajkovic S. 2013. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia [J]. Global and Planetary Change, 100: 172−182. doi: 10.1016/j.gloplacha.2012.10.014
    [12] Gray S B, Dermody O, Klein S P, et al. 2016. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean [J]. Nature Plants, 2(9): 16132. doi: 10.1038/nplants.2016.132
    [13] Huang M, Piao S, Sun Y, et al. 2015. Change in terrestrial ecosystem water-use efficiency over the last three decades [J]. Global Chang Biology, 21(6): 2366−78. doi: 10.1111/gcb.12873
    [14] Hu Z M, Yu G R, Fu Y L, et al. 2008. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China [J]. Global Change Biology, 14(7): 1609−1619. doi: 10.1111/j.1365-2486.2008.01582.x
    [15] Jarvis P G. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 273(927): 593−610. doi: 10.1098/rstb.1976.0035
    [16] Keenan T F, Hollinger D Y, Bohrer G, et al. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise [J]. Nature, 499(7458): 324−327. doi: 10.1038/nature12291
    [17] Kendall M G. 1975. Rank Correlation Methods (4th ed.) [M]. London: Charles Griffin, 202pp.
    [18] Lavergne A, Graven H, De Kauwe M G, et al. 2019. Observed and modelled historical trends in the water-use efficiency of plants and ecosystems [J]. Global Change Biology, 25(7): 2242−2257. doi: 10.1111/gcb.14634
    [19] Leuning R, Zhang Y Q, Rajaud A, et al. 2008. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation [J]. Water Resour. Res., 44(10): W10419. doi: 10.1029/2007wr006562
    [20] Leuzinger S, Körner C. 2007. Water savings in mature deciduous forest trees under elevated CO2 [J]. Global Change Biology, 13(12): 2498−2508. doi: 10.1111/j.1365-2486.2007.01467.x
    [21] Mann H B. 1945. Nonparametric tests against trend [J]. Econometrica, 13(3): 245−259. doi: 10.2307/1907187
    [22] Mansfield T A. 1967. Stomatal behaviour following treatment with auxin-like substances and phenylmercuric acetate [J]. New Phytol., 66(3): 325−330. doi: 10.1111/j.1469-8137.1967.tb06011.x
    [23] Medlyn B E, De Kauwe M G, Lin Y S, et al. 2017. How do leaf and ecosystem measures of water-use efficiency compare? [J]. New Phytol., 216(3): 758−770. doi: 10.1111/nph.14626
    [24] Monteith J L. 1965. Evaporation and environment [J]. Symp. Soc. Exp. Biol., 19: 205−234.
    [25] Niu S L, Xing X R, Zhang Z, et al. 2011. Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe [J]. Global Change Biology, 17(2): 1073−1082. doi: 10.1111/j.1365-2486.2010.02280.x
    [26] Pastorello G, Trotta C, Canfora E, et al. 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data [J]. Scientific Data, 7(1): 225. doi: 10.1038/s41597-020-0534-3
    [27] Penman H L, Keen B A. 1948. Natural evaporation from open water, bare soil and grass [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 193(1032): 120−145. doi: 10.1098/rspa.1948.0037
    [28] Piao S, Friedlingstein P, Ciais P, et al. 2007. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends [J]. Proc. Natl. Acad. Sci. USA, 104(39): 15242−15247. doi: 10.1073/pnas.0707213104
    [29] Quan Q, Zhang F Y, Tian D S, et al. 2018. Transpiration dominates ecosystem water-use efficiency in response to warming in an alpine meadow [J]. J. Geophys. Res.: Biogeosci., 123(2): 453−462. doi: 10.1002/2017jg004362
    [30] Schlesinger W H, Jasechko S. 2014. Transpiration in the global water cycle [J]. Agric. For. Meteorol. , 189–190: 115–117. doi: 10.1016/j.agrformet.2014.01.011
    [31] Sen P K. 1968. Estimates of the regression coefficient based on Kendall’s Tau [J]. J. Am. Stat. Assoc., 63(324): 1379−1389. doi: 10.1080/01621459.1968.10480934
    [32] Sindelarova K, Granier C, Bouarar I, et al. 2014. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years [J]. Atmospheric Chemistry and Physics, 14(17): 9317−9341. doi: 10.5194/acp-14-9317-2014.S
    [33] Sulman B N, Roman D T, Yi K, et al. 2016. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil [J]. Geophys. Res. Lett., 43(18): 9686−9695. doi: 10.1002/2016gl069416
    [34] Thornley J H M. 1976. Mathematical Models in Plant Physiology: A Quantitative Approach to Problems in Plant and Crop Physiology [M]. London: Academic Press, 318pp.
    [35] Ukkola A M, Prentice I C, Keenan T F, et al. 2016. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation [J]. Nature Climate Change, 6(1): 75−78. doi: 10.1038/nclimate2831
    [36] van Dijk A I J M, Bruijnzeel L A. 2001. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description [J]. J. Hydrol. , 247(3–4): 230–238. doi: 10.1016/S0022-1694(01)00392-4
    [37] 王惠文. 1999. 偏最小二乘回归方法及其应用[M]. 北京: 国防工业出版社, 150–177.

    Wang Huiwen. 1999. Partial Least-Squares Regression-Method and Applications (in Chinese) [M]. Beijing: National Defense Industry Press, 150–177.
    [38] Wang M J, Chen Y H, Wu X C, et al. 2018. Forest-type-dependent water use efficiency trends across the Northern Hemisphere [J]. Geophys. Res. Lett., 45(16): 8283−8293. doi: 10.1029/2018gl079093
    [39] Wei Z W, Yoshimura K, Wang L X, et al. 2017. Revisiting the contribution of transpiration to global terrestrial evapotranspiration [J]. Geophys. Res. Lett., 44(6): 2792−2801. doi: 10.1002/2016gl072235
    [40] Yepez E A, Scott R L, Cable W L, et al. 2007. Intraseasonal variation in water and carbon dioxide flux components in a semiarid riparian woodland [J]. Ecosystems, 10(7): 1100−1115. doi: 10.1007/s10021-007-9079-y
    [41] Yu G R, Song X, Wang Q F, et al. 2008. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables [J]. New Phytol., 177(4): 927−937. doi: 10.1111/j.1469-8137.2007.02316.x
    [42] Yu Q, Zhang Y Q, Liu Y F, et al. 2004. Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes [J]. Ann. Bot., 93(4): 435−441. doi: 10.1093/aob/mch023
    [43] Yuan H, Dai Y J, Xiao Z Q, et al. 2011. Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling [J]. Remote Sens. Environ., 115(5): 1171−1187. doi: 10.1016/j.rse.2011.01.001
    [44] Zhang Y Q, Peña-Arancibia J L, McVicar T R, et al. 2016. Multi-decadal trends in global terrestrial evapotranspiration and its components [J]. Sci. Rep., 6: 19124. doi: 10.1038/srep19124
    [45] Zhang X X, Dai Y J, Cui H Z, et al. 2017. Evaluating common land model energy fluxes using FLUXNET data [J]. Adv. Atmos. Sci., 34(9): 1035−1046. doi: 10.1007/s00376-017-6251-y
    [46] Zhang Y Q, Kong D D, Gan R, et al. 2019. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017 [J]. Remote Sens. Environ., 222: 165−182. doi: 10.1016/j.rse.2018.12.031
    [47] Zhou S X, Duursma R A, Medlyn B E, et al. 2013. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress [J]. Agric. For. Meteorol. , 182–183: 204–214. doi: 10.1016/j.agrformet.2013.05.009
    [48] Zhu Z C, Bi J, Pan Y Z, et al. 2013. Global data sets of vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011 [J]. Remote Sensing, 5(2): 927−948. doi: 10.3390/rs5020927
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  15
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 网络出版日期:  2022-05-13
  • 刊出日期:  2023-01-25

目录

    /

    返回文章
    返回