高级检索

海气浪耦合对我国东南沿海地区短期数值天气预报影响的初步研究

Preliminary Study on the Impacts of Air–Sea–Wave Coupling on Short-Term Numerical Weather Prediction in Southeast China

  • 摘要: 为探究高分辨率海—气—浪耦合对提高短期数值天气预报水平的必要性,本研究建立一个由ROMS(Regional Ocean Modeling System)、WRF(Weather Research and Forecast model)和WW3(WAVEWATCH Ⅲ)模式组成的海—气—浪耦合模式,对2023年6月中下旬梅雨过程开展模拟预报试验,系统分析了耦合对降水,及与降水密切相关的气象要素的时空影响特征。结果表明:降水、2 m气温、10 m风场以及比湿等大气要素响应呈现显著时空异质性,耦合产生的差异信号由海面向内陆传播的特征显著;36小时可在陆面局地呈现10 mm (3 h)−1的强降水差异,3天内对于局地日降水可达到50 mm d−1以上的大范围落区差异;近地层气温风场差异在36小时达到背景值的10%。垂直方向上,随着预报时间,耦合对于风场和水汽场的影响快速向高层传递。耦合对风场的影响相较于水汽场更快传递至高层,36小时内差异贯穿对流层(达到100 hPa)并覆盖整个研究区域。垂直速度偏差触发低层动力调整,会在一定程度上加速水汽垂直输送。此外,耦合效应对7天尺度的大气环流形势产生可辨识的调整作用,500 hPa高度处陆面低涡区位势高度差异较大。研究证明海—气—浪耦合在36小时时效内对我国东南沿海地区的大气要素预报具有显著影响,并对环流形势产生不可忽视的影响。海—气—浪耦合应用于我国的短期天气预报具有必要性。

     

    Abstract: To investigate the necessity of high-resolution air–sea–wave coupling for improving short-term numerical weather prediction, a coupled air–sea–wave model consisting of ROMS (Regional Ocean Modeling System), WRF (Weather Research and Forecast model) and WW3 (WAVEWATCH Ⅲ) is established, and a set of sensitivity experiments is conducted. The Meiyu rainfall events from June 2023 are selected. We analyze the spatiotemporal characteristics of coupling effects on the precipitation and related meteorological fields. The results demonstrate remarkable spatiotemporal heterogeneity in atmospheric responses, including precipitation, 2-m air temperature, 10-m wind field, and specific humidity. Coupling-induced differential signals exhibited landward propagation, with localized differences in heavy precipitation reaching 10 mm (3 h)−1 within 36 h and extensive differences in daily precipitation exceeding 50 mm d−1 over regional scales within 3 days, in the land surface. Near-surface temperature and wind field differences reached 10% of the background values within 36 h. Vertically, the coupling effects on the wind and moisture fields propagated upward progressively and quickly with forecast time. The wind field response propagated faster than moisture variations, with differences penetrating the entire troposphere (up to 100 hPa) and covering the study domain within 36 h. Vertical velocity deviations triggered low-level dynamic adjustments that accelerated moisture vertical transport. Furthermore, the coupling effects induced discernible adjustments in the atmospheric circulation patterns of 7 days, with substantial geopotential height differences over land-based vortex systems at 500 hPa. This study confirms that air–sea–wave coupling considerably affects atmospheric element predictions along China’s southeastern coast within 36 h while nonnegligibly modifying the circulation patterns. The implementation of air–sea–wave coupling proves essential for enhancing short-term weather forecasting in Southeast China.

     

/

返回文章
返回