Advanced Search

2015 Vol. 32, No. 11

Display Method:
Percentile-based Neighborhood Precipitation Verification and Its Application to a Landfalling Tropical Storm Case with Radar Data Assimilation
ZHU Kefeng, YANG Yi, Ming XUE
2015, 32(11): 1449-1459. doi: 10.1007/s00376-015-5023-9
The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thresholds in terms of the percentiles of overall precipitation instead of fixed threshold values. The impact of intensity forecast bias on the calculated threat score is reduced. The method is tested with the forecasts of a tropical storm that re-intensified after making landfall and caused heavy flooding. The forecasts are produced with and without radar data assimilation. The forecast with assimilation of both radial velocity and reflectivity produce precipitation patterns that better match observations but have large positive intensity bias. When using fixed thresholds, the neighborhood threat scores fail to yield high scores for forecasts that have good pattern match with observations, due to large intensity bias. In contrast, the percentile-based neighborhood method yields the highest score for the forecast with the best pattern match and the smallest position error. The percentile-based method also yields scores that are more consistent with object-based verifications, which are less sensitive to intensity bias, demonstrating the potential value of percentile-based verification.
An Ocean Data Assimilation System in the Indian Ocean and West Pacific Ocean
YAN Changxiang, ZHU Jiang, XIE Jiping
2015, 32(11): 1460-1472. doi: 10.1007/s00376-015-4121-z
The development and application of a regional ocean data assimilation system are among the aims of the Global Ocean Data Assimilation Experiment. The ocean data assimilation system in the regions including the Indian and West Pacific oceans is an endeavor motivated by this goal. In this study, we describe the system in detail. Moreover, the reanalysis in the joint area of Asia, the Indian Ocean, and the western Pacific Ocean (hereafter AIPOcean) constructed using multi-year model integration with data assimilation is used to test the performance of this system. The ocean model is an eddy-resolving, hybrid coordinate ocean model. Various types of observations including in-situ temperature and salinity profiles (mechanical bathythermograph, expendable bathythermograph, Array for Real-time Geostrophic Oceanography, Tropical Atmosphere Ocean Array, conductivity-temperature-depth, station data), remotely-sensed sea surface temperature, and altimetry sea level anomalies, are assimilated into the reanalysis via the ensemble optimal interpolation method. An ensemble of model states sampled from a long-term integration is allowed to change with season, rather than remaining stationary. The estimated background error covariance matrix may reasonably reflect the seasonality and anisotropy. We evaluate the performance of AIPOcean during the period 1993-2006 by comparisons with independent observations, and some reanalysis products. We show that AIPOcean reduces the errors of subsurface temperature and salinity, and reproduces mesoscale eddies. In contrast to ECCO and SODA products, AIPOcean captures the interannual variability and linear trend of sea level anomalies very well. AIPOcean also shows a good consistency with tide gauges.
Strengthening of the Walker Circulation under Global Warming in an Aqua-Planet General Circulation Model Simulation
Tim LI, ZHANG Lei, Hiroyuki MURAKAMI
2015, 32(11): 1473-1480. doi: 10.1007/s00376-015-5033-7
Most climate models project a weakening of the Walker circulation under global warming scenarios. It is argued, based on a global averaged moisture budget, that this weakening can be attributed to a slower rate of rainfall increase compared to that of moisture increase, which leads to a decrease in ascending motion. Through an idealized aqua-planet simulation in which a zonal wavenumber-1 SST distribution is prescribed along the equator, we find that the Walker circulation is strengthened under a uniform 2-K SST warming, even though the global mean rainfall-moisture relationship remains the same. Further diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere. As a result, a "double-cell" circulation change pattern with a clockwise (anti-clockwise) circulation anomaly in the upper (lower) troposphere forms, and the upper tropospheric circulation change dominates. The mechanism for the formation of the "double cell" circulation pattern is attributed to a larger (smaller) rate of increase of diabatic heating than static stability in the upper (lower) troposphere. The result indicates that the future change of the Walker circulation cannot simply be interpreted based on a global mean moisture budget argument.
Satellite Measurements of the Madden-Julian Oscillation in Wintertime Stratospheric Ozone over the Tibetan Plateau and East Asia
ZHANG Yuli, LIU Yi, LIU Chuanxi, V. F. SOFIEVA
2015, 32(11): 1481-1492. doi: 10.1007/s00376-015-5005-y
We investigate the Madden-Julian Oscillation (MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices —— the all-season Real-Time multivariate MJO index (RMM) and outgoing longwave radiation-based MJO index (OMI) —— are used to compare the MJO-related ozone anomalies. The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies (mainly within 20-200 hPa) over the subtropics. The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4-7, when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean. Compared with the results based on RMM, the MJO-related stratospheric column ozone anomalies based on OMI are stronger and one phase ahead. Further analysis suggests that different sampling errors, observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements. The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies, i.e., the uplifted tropopause and the northward shifted westerly jet in the upper troposphere. Compared to the result based on RMM, the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI. Our study indicates that the circulation-based MJO index (RMM) can better characterize the MJO-related anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere, especially over subtropical East Asia.
An Online Model Correction Method Based on an Inverse Problem: Part II——Systematic Model Error Correction
XUE Haile, SHEN Xueshun, CHOU Jifan
2015, 32(11): 1493-1503. doi: 10.1007/s00376-015-4262-0
An online systematic error correction is presented and examined as a technique to improve the accuracy of real-time numerical weather prediction, based on the dataset of model errors (MEs) in past intervals. Given the analyses, the ME in each interval (6 h) between two analyses can be iteratively obtained by introducing an unknown tendency term into the prediction equation, shown in Part I of this two-paper series. In this part, after analyzing the 5-year (2001-2005) GRAPES-GFS (Global Forecast System of the Global and Regional Assimilation and Prediction System) error patterns and evolution, a systematic model error correction is given based on the least-squares approach by firstly using the past MEs. To test the correction, we applied the approach in GRAPES-GFS for July 2009 and January 2010. The datasets associated with the initial condition and SST used in this study were based on NCEP (National Centers for Environmental Prediction) FNL (final) data. The results indicated that the Northern Hemispheric systematically underestimated equator-to-pole geopotential gradient and westerly wind of GRAPES-GFS were largely enhanced, and the biases of temperature and wind in the tropics were strongly reduced. Therefore, the correction results in a more skillful forecast with lower mean bias and root-mean-square error and higher anomaly correlation coefficient.
Properties of Cloud and Precipitation over the Tibetan Plateau
WANG Chenghai, SHI Hongxia, HU Haolin, WANG Yi, XI Baike
2015, 32(11): 1504-1516. doi: 10.1007/s00376-015-4254-0
The characteristics of seasonal precipitation over the Tibetan Plateau (TP) were investigated using TRMM (Tropical Rainfall Measuring Mission) precipitation data (3B43). Sensitive regions of summer precipitation interannual variation anomalies were investigated using EOF (empirical orthogonal function) analysis. Furthermore, the profiles of cloud water content (CWC) and precipitable water in different regions and seasons were analyzed using TRMM-3A12 data observed by the TRMM Microwave Imager. Good agreement was found between hydrometeors and precipitation over the eastern and southeastern TP, where water vapor is adequate, while the water vapor amount is not significant over the western and northern TP. Further analysis showed meridional and zonal anomalies of CWC centers in the ascending branch of the Hadley and Walker Circulation, especially over the south and east of the TP. The interannual variation of hydrometeors over the past decade showed a decrease over the southeastern and northwestern TP, along with a corresponding increase over other regions.
Remote Impact of Blocking Highs on the Sudden Track Reversal of Tropical Cyclones
LUO Xia, FEI Jianfang, HUANG Xiaogang, CHENG Xiaoping, YU Kun
2015, 32(11): 1517-1532. doi: 10.1007/s00376-015-4284-7
Previous work showed that some tropical cyclones (TCs) in the western Pacific Ocean undergo sudden track reversal, and the onset, maintenance and decay of blocking highs (BHs) coexisted with 19 of the studied TCs with sudden track reversal. In these cases, the phase relations between the BH, the continental high (CH), the subtropical high (SH) and the suddenly reversed TCs could be classified into types A, B, C and D. Types C and D were the focal point of this follow-up study, in which Typhoon Pabuk (2007) and Lupit (2009) were employed to conduct numerical simulations. The results showed that the reversed tracks of Pabuk (2007) and Lupit (2009) could have been affected by the BH, particularly in terms of the turning location and the trend of movement after turning. Specifically, the two main features for Pabuk (2007) in the BH perturbations were the deflection of its turning point and a distinct anticlockwise rotation. Lupit (2009) deviated to the southwest and finally made landfall in the Philippines, or experienced further eastward movement, in the perturbed BH. The impact mechanisms can be attributed to the change in the vorticity field transported from the BH, leading to an intensity variation of midlatitude systems. BHs may have a positive feedback effect on the strength of the westerly trough (TR), as indicated by a weakened and strengthened TR corresponding to negative and positive BH perturbations, respectively.
Bred Vectors of the Lorenz63 System
Ying ZHANG, Kayo IDE, Eugenia KALNAY
2015, 32(11): 1533-1538. doi: 10.1007/s00376-015-4275-8
The breeding method has been widely used in studies of data assimilation, predictability and instabilities. The bred vectors (BVs), which are the nonlinear difference between the control and perturbed runs, represent the time-evolving rapidly growing errors in dynamic systems. The Lorenz (1963) model (hereafter Lorenz63 model) has chaotic dynamics similar to weather and climate. This study investigates the features of BVs of the Lorenz63 model and its impact on regime prediction of the Lorenz63 model. The results show that the Lorenz63 model has two different BVs for each breeding cycle, and the two BVs approach being identical when growth rate is high. The duration of the current and next regime is associated with the relative directions between the BV with high growth rate and the model trajectory.
Tropical Cyclone Genesis Potential Index over the Western North Pacific Simulated by CMIP5 Models
SONG Yajuan, WANG Lei, LEI Xiaoyan, WANG Xidong
2015, 32(11): 1539-1550. doi: 10.1007/s00376-015-4162-3
Tropical cyclone (TC) genesis over the western North Pacific (WNP) is analyzed using 23 CMIP5 (Coupled Model Intercomparison Project Phase 5) models and reanalysis datasets. The models are evaluated according to TC genesis potential index (GPI). The spatial and temporal variations of the GPI are first calculated using three atmospheric reanalysis datasets (ERA-Interim, NCEP/NCAR Reanalysis-1, and NCEP/DOE Reanalysis-2). Spatial distributions of July-October-mean TC frequency based on the GPI from ERA-interim are more consistent with observed ones derived from IBTrACS global TC data. So, the ERA-interim reanalysis dataset is used to examine the CMIP5 models in terms of reproducing GPI during the period 1982-2005. Although most models possess deficiencies in reproducing the spatial distribution of the GPI, their multi-model ensemble (MME) mean shows a reasonable climatological GPI pattern characterized by a high GPI zone along 20°N in the WNP. There was an upward trend of TC genesis frequency during 1982 to 1998, followed by a downward trend. Both MME results and reanalysis data can represent a robust increasing trend during 1982-1998, but the models cannot simulate the downward trend after 2000. Analysis based on future projection experiments shows that the GPI exhibits no significant change in the first half of the 21st century, and then starts to decrease at the end of the 21st century under the representative concentration pathway (RCP) 2.6 scenario. Under the RCP8.5 scenario, the GPI shows an increasing trend in the vicinity of 20°N, indicating more TCs could possibly be expected over the WNP under future global warming.
Simulation of Salinity Variability and the Related Freshwater Flux Forcing in the Tropical Pacific: An Evaluation Using the Beijing Normal University Earth System Model (BNU-ESM)
ZHI Hai, ZHANG Rong-Hua, LIN Pengfei, WANG Lanning
2015, 32(11): 1551-1564. doi: 10.1007/s00376-015-4240-6
The climatology and interannual variability of sea surface salinity (SSS) and freshwater flux (FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth System Model (BNU-ESM). The simulated annual climatology and interannual variations of SSS, FWF, mixed layer depth (MLD), and buoyancy flux agree with those observed in the equatorial Pacific. The relationships among the interannual anomaly fields simulated by BNU-ESM are analyzed to illustrate the climate feedbacks induced by FWF in the tropical Pacific. The largest interannual variations of SSS and FWF are located in the western-central equatorial Pacific. A positive FWF feedback effect on sea surface temperature (SST) in the equatorial Pacific is identified. As a response to El Niño-Southern Oscillation (ENSO), the interannual variation of FWF induces ocean processes which, in turn, enhance ENSO. During El Niño, a positive FWF anomaly in the western-central Pacific (an indication of increased precipitation rates) acts to enhance a negative salinity anomaly and a negative surface ocean density anomaly, leading to stable stratification in the upper ocean. Hence, the vertical mixing and entrainment of subsurface water into the mixed layer are reduced, and the associated El Niño is enhanced. Related to this positive feedback, the simulated FWF bias is clearly reflected in SSS and SST simulations, with a positive FWF perturbation into the ocean corresponding to a low SSS and a small surface ocean density in the western-central equatorial Pacific warm pool.
Comparison of Dryland Climate Change in Observations and CMIP5 Simulations
JI Mingxia, HUANG Jianping, XIE Yongkun, LIU Jun
2015, 32(11): 1565-1574. doi: 10.1007/s00376-015-4267-8
A comparison of observations with 20 climate model simulations from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) revealed that observed dryland expansion amounted to 2.61× 106 km2 during the 58 years from 1948 to 2005, which was four times higher than that in the simulations (0.55× 106 km2). Dryland expansion was accompanied by a decline in aridity index (AI) (drying trend) as a result of decreased precipitation and increased potential evapotranspiration across all dryland subtype areas in the observations, especially in the semi-arid and dry subhumid regions. However, the CMIP5 multi-model ensemble (MME) average performed poorly with regard to the decreasing trends of AI and precipitation. By analyzing the factors controlling AI, we found that the overall bias of AI in the simulations, compared with observations, was largely due to limitations in the simulation of precipitation. The simulated precipitation over global drylands was substantially overestimated compared with observations across all subtype areas, and the spatial distribution of precipitation in the MME was largely inconsistent in the African Sahel, East Asia, and eastern Australia, where the semi-arid and dry subhumid regions were mainly located.