Advanced Search
Article Contents

Dynamic scaling of the generalized complementary relationship (GCR) improves long-term tendency estimates in land evaporation

Fund Project:

BME-Water Sciences and Disaster Prevention FIKP grant of EMMI (BME FIKP-VIZ).

  • Most large-scale evapotranspiration (ET) estimation methods require detailed information of land use, land cover, and/or soil type on top of various atmospheric measurements. The complementary relationship of evaporation (CR) takes advantage of the inherent dynamic feedback mechanisms found in the soil-vegetation-atmosphere interface for its estimation of ET rates without the need of such bio-geo-physical data. Evapotranspiration estimates over the conterminous United States by a new, globally calibrated, static scaling (GCR-stat) of the generalized complementary relationship (GCR) of evaporation were compared to similar estimates of an existing, calibration-free version (GCR-dyn) of the GCR that employs a temporally varying dynamic scaling. Simplified annual water-balances of 327 medium and 18 large watersheds served as ground-truth ET values. With long-term monthly mean forcing, GCR-stat (also utilizing precipitation measurements) outperforms GCR-dyn as the latter cannot fully take advantage of its dynamic scaling with such data of reduced temporal variability. However, in a continuous monthly simulation, GCR-dyn is on a par with GCR-stat, and especially excels in reproducing long-term tendencies in annual catchment ET rates even though it does not require precipitation information. The same GCR-dyn estimates were also compared to similar estimates of eight other popular ET products and generally outperform all of them. For this reason, a dynamic scaling of the GCR is recommended over a static one for modeling long-term behavior of terrestrial ET.
  • [1] WEI Ke, CHEN Wen, HUANG Ronghui, 2006: Long-Term Changes of the Ultraviolet Radiation in China and its Relationship with Total Ozone and Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 700-710.  doi: 10.1007/s00376-006-0700-3
    [2] T. C. LEE, H. S. CHAN, E. W. L. GINN, M. C. WONG, 2011: Long-Term Trends in Extreme Temperatures in Hong Kong and Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 147-157.  doi: 10.1007/s00376-010-9160-x
    [3] Lei LIU, Fei HU, 2019: Long-term Correlations and Extreme Wind Speed Estimations, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1121-1128.  doi: 10.1007/s00376-019-9031-z
    [4] HU Bo, WANG Yuesi, LIU Guangren, 2010: Long-Term Trends in Photosynthetically Active Radiation in Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1380-1388.  doi: 10.1007/s00376-010-9204-2
    [5] Tomio Asai, Yasumasa Kodama, Ji-Cang Zhu, 1988: LONG-TERM VARIATIONS OF CYCLONE ACTIVITIES IN EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 149-158.  doi: 10.1007/BF02656777
    [6] HU Shujuan, CHOU Jifan, 2004: Uncertainty of the Numerical Solution of a Nonlinear System's Long-term Behavior and Global Convergence of the Numerical Pattern, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 767-774.  doi: 10.1007/BF02916373
    [7] LIN Pengfei, YU Yongqiang, LIU Hailong, 2013: Long-term Stability and Oceanic Mean State Simulated by the Coupled Model FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 175-192.  doi: 10.1007/s00376-012-2042-7
    [8] Yong ZHANG, Lejian ZHANG, Jianping GUO, Jinming FENG, Lijuan CAO, Yang WANG, Qing ZHOU, Liangxu LI, Bai LI, Hui XU, Lin LIU, Ning AN, Huan LIU, 2018: Climatology of Cloud-base Height from Long-term Radiosonde Measurements in China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 158-168.  doi: 10.1007/s00376-017-7096-0
    [9] FENG Lin, WU Dexing, LIN Xiaopei, MENG Xiangfeng, 2010: The Effect of Regional Ocean-Atmosphere Coupling on the Long-term Variability in the Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 393-402.  doi: 10.1007/s00376-009-8195-3
    [10] Kyu Rang KIM, Tae Heon KWON, Yeon-Hee KIM, Hae-Jung KOO, Byoung-Cheol CHOI, Chee-Young CHOI, 2009: Restoration of an Inner-City Stream and Its Impact on Air Temperature and Humidity Based on Long-Term Monitoring Data, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 283-292.  doi: 10.1007/s00376-009-0283-x
    [11] Ping LIANG, Yihui DING, 2017: The Long-term Variation of Extreme Heavy Precipitation and Its Link to Urbanization Effects in Shanghai during 1916-2014, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 321-334.  doi: 10.1007/s00376-016-6120-0
    [12] Zhen LI, Zhongwei YAN, Lijuan CAO, Phil D. JONES, 2018: Further-Adjusted Long-Term Temperature Series in China Based on MASH, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 909-917.  doi: 10.1007/s00376-018-7280-x
    [13] Wang Duo, Zhang Tan, 1989: The Band Characteristics of Long-Term Variation of Precipitation and Water Resources in East Asia Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 347-356.  doi: 10.1007/BF02661540
    [14] Jin Long, LuoYing, Lin Zhenshan, 1997: Comparison of Long-Term Forecasting of June-August Rainfall over Changjiang-Huaihe Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 87-92.  doi: 10.1007/s00376-997-0047-4
    [15] G. B. Pant, K. Rupa Kumar, B. Parthasarathy, H. P. Borgaonkar, 1988: LONG-TERM VARIABILITY OF THE INDIAN SUMMER MON-SOON AND RELATED PARAMETERS, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 469-481.  doi: 10.1007/BF02656792
    [16] LIN Pengfei, LIU Hailong, YU Yongqiang, and ZHOU Tianjun, 2013: Long-term Behaviors of Two Versions of FGOALS2 in Preindustrial Control Simulations with Implications for 20th Century Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 577-592.  doi: 10.1007/s00376-013-2186-0
    [17] Pucai WANG, N. F. ELANSKY, Yu. M. TIMOFEEV, Gengchen WANG, G. S. GOLITSYN, M. V. MAKAROVA, V. S. RAKITIN, Yu. SHTABKIN, A. I. SKOROKHOD, E. I. GRECHKO, E.V. FOKEEVA, A. N. SAFRONOV, Liang RAN, Ting WANG, 2018: Long-Term Trends of Carbon Monoxide Total Columnar Amount in Urban Areas and Background Regions: Ground- and Satellite-based Spectroscopic Measurements, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 785-795.  doi: 10.1007/s00376-017-6327-8
    [18] LIANG Miaoling, XIE Zhenghui, 2008: Improving the Vegetation Dynamic Simulation in a Land Surface Model by Using a Statistical-dynamic Canopy Interception Scheme, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 610-618.  doi: 10.1007/s00376-008-0610-7
    [19] LI Fang, ZENG Xiaodong, SONG Xiang, TIAN Dongxiao, SHAO Pu, ZHANG Dongling, 2011: Impact of Spin-up Forcing on Vegetation States Simulated by a Dynamic Global Vegetation Model Coupled with a Land Surface Model, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 775-788.  doi: 10.1007/s00376-010-0009-0
    [20] WANG Zhifu, QIAN Yongfu, 2009: The Relationship of Land-Ocean Thermal Anomaly Difference with Mei-yu and South China Sea Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 169-179.  doi: 10.1007/s00376-009-0169-y

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 23 March 2020
Manuscript revised: 18 June 2020
Manuscript accepted: 28 June 2020
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Dynamic scaling of the generalized complementary relationship (GCR) improves long-term tendency estimates in land evaporation

Abstract: Most large-scale evapotranspiration (ET) estimation methods require detailed information of land use, land cover, and/or soil type on top of various atmospheric measurements. The complementary relationship of evaporation (CR) takes advantage of the inherent dynamic feedback mechanisms found in the soil-vegetation-atmosphere interface for its estimation of ET rates without the need of such bio-geo-physical data. Evapotranspiration estimates over the conterminous United States by a new, globally calibrated, static scaling (GCR-stat) of the generalized complementary relationship (GCR) of evaporation were compared to similar estimates of an existing, calibration-free version (GCR-dyn) of the GCR that employs a temporally varying dynamic scaling. Simplified annual water-balances of 327 medium and 18 large watersheds served as ground-truth ET values. With long-term monthly mean forcing, GCR-stat (also utilizing precipitation measurements) outperforms GCR-dyn as the latter cannot fully take advantage of its dynamic scaling with such data of reduced temporal variability. However, in a continuous monthly simulation, GCR-dyn is on a par with GCR-stat, and especially excels in reproducing long-term tendencies in annual catchment ET rates even though it does not require precipitation information. The same GCR-dyn estimates were also compared to similar estimates of eight other popular ET products and generally outperform all of them. For this reason, a dynamic scaling of the GCR is recommended over a static one for modeling long-term behavior of terrestrial ET.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return