Advanced Search

2006 Vol. 23, No. 2

Display Method:
Analysis of Ice Water Path Retrieval Errors Over Tropical Ocean
HUANG Jianping
2006, 23(2): 165-180. doi: 10.1007/s00376-006-0165-4
Retrieval of multi-layered cloud properties, especially ice water path (IWP), is one of the most perplexing problems in satellite cloud remote sensing. This paper develops a method for improving the IWP retrievals for ice-over-water overlapped cloud systems using Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Visible and Infrared Scanner (VIRS) data. A combined microwave, visible and infrared algorithm is used to identify overlapped clouds and estimate IWP separately from liquid water path. The retrieval error of IWP is then evaluated by comparing the IWP to that retrieved from single-layer ice clouds surrounding the observed overlapping systems. The major IWP retrieval errors of overlapped clouds are primarily controlled by the errors in estimating the visible optical depth. Optical depths are overestimated by about 10–40% due to the influence of the underlying cloud. For the ice-over-warm-water cloud systems (cloud water temperature Tw > 273 K), the globally averaged IWP retrieval error is about 10%. This cloud type accounts for about 15% of all high-cloud overlapping cases. Ice-over-super-cooled water clouds are the predominant overlapped cloud system, accounting for 55% of the cases. Their global averaged error is 17.2%. The largest IWP retrieval error results when ice clouds occur over extremely super-cooled water clouds (Tw 6 255 K). Overall, roughly 33% of the VIRS IWP retrievals are overestimated due to the effects of the liquid water clouds beneath the cirrus clouds. To improve the accuracy of the IWP retrievals, correction models are developed and applied to all three types of overlapped clouds. The preliminary results indicate that the correction models reduce part of the retrieval error.
The Role of the Kuroshio in the Winter North Pacific Ocean-Atmosphere Interaction: Comparison of a Coupled Model and Observations
LIU Qinyu, WEN Na, YU Yongqiang
2006, 23(2): 181-189. doi: 10.1007/s00376-006-0181-4
A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but in the North Pacific the model gives lower values, and the differences are most significant over the northern boundary of the Pacific. In a net heat flux comparison, the spatial patterns of the two are similar in winter, but more heat loss appears to the east of Japan in FGCM than in COADS. On the interannual timescale, strong (weak) Kuroshio transports to the east of Taiwan lead the increasing (decreasing) net heat flux, which is centered over the Kuroshio Extension region, by 1–2 months, with low (high) pressure anomaly responses appearing at 500 hPa over the North Pacific (north of 25N) in winter. The northward heat transport of the Kuroshio is one of the important heat sources to support the warming of the atmosphere by the ocean and the formation of the low pressure anomaly at 500 hPa over the North Pacific in winter.
A Comparison of the Radar Ray Path Equations and Approximations for Use in Radar Data Assimilation
Jidong GAO, Keith BREWSTER, Ming XUE
2006, 23(2): 190-198. doi: 10.1007/s00376-006-0190-3
The radar ray path equations are used to determine the physical location of each radar measurement. These equations are necessary for mapping radar data to computational grids for diagnosis, display and numerical weather prediction (NWP). They are also used to determine the forward operators for assimilation of radar data into forecast models. In this paper, a stepwise ray tracing method is developed. The influence of the atmospheric refractive index on the ray path equations at different locations related to an intense cold front is examined against the ray path derived from the new tracing method. It is shown that the radar ray path is not very sensitive to sharp vertical gradients of refractive index caused by the strong temperature inversion and large moisture gradient in this case. In the paper, the errors caused by using the simplified straight ray path equations are also examined. It is found that there will be significant errors in the physical location of radar measurements if the earth’s curvature is not considered, especially at lower elevation angles. A reduced form of the equation for beam height calculation is derived using Taylor series expansion. It is computationally more efficient and also avoids the need to use double precision variables to mitigate the small difference between two large terms in the original form. The accuracy of this reduced form is found to be sufficient for modeling use.
Glacial Thermohaline Circulation and Climate: Forcing from the North or South?
Zhengyu LIU
2006, 23(2): 199-206. doi: 10.1007/s00376-006-0199-7
Based on the evidence available from both observations and model simulations, the author proposes a view that may provide a unified interpretation of the North Atlantic thermohaline variability. Because of the slow response time of the Southern Ocean (millennia) and the relatively faster response time of the North Atlantic (centuries), the North Atlantic thermohaline circulation is controlled predominantly by the climate forcing over the Southern Ocean at the long glacial cycle timescales, but by the North Atlantic climate forcing at the short millennial timescales.
Dependence of Upper Atmosphere Photochemistry on the Shape of the Diurnal Cycle of the Photolysis Rates
2006, 23(2): 207-214. doi: 10.1007/s00376-006-0207-y
A photochemical model of the atmosphere constitutes a non–linear, non–autonomous dynamical system, enforced by the Earth’s rotation. Some studies have shown that the region of the mesopause tends towards non–linear responses such as period-doubling cascades and chaos. In these studies, simple approximations for the diurnal variations of the photolysis rates are assumed. The goal of this article is to investigate what happens if the more realistic, calculated photolysis rates are introduced. It is found that, if the usual approximations—sinusoidal and step fiunctions—are assumed, the responses of the system are similar: it converges to a 2–day periodic solution. If the more realistic, calculated diurnal cycle is introduced, a new 4–day subharmonic appear.
Middle-High Latitude N2O Distributions Related to the Arctic Vortex Breakup
ZHOU Libo, ZOU Han, GAO Yongqi
2006, 23(2): 215-223. doi: 10.1007/s00376-006-0215-y
The relationship of N2O distributions with the Arctic vortex breakup is first analyzed with a probability distribution function (PDF) analysis. The N2O concentration shows different distributions between the early and late vortex breakup years. In the early breakup years, the N2O concentration shows low values and large dispersions after the vortex breakup, which is related to the inhomogeneity in the vertical advection in the middle and high latitude lower stratosphere. The horizontal diffusion coefficient (Kyy) shows a larger value accordingly. In the late breakup years, the N2O concentration shows high values and more uniform distributions than in the early years after the vortex breakup, with a smaller vertical advection and Kyy after the vortex breakup. It is found that the N2O distributions are largely affected by the Arctic vortex breakup time but the dynamically defined vortex breakup time is not the only factor.
Estimating the Retrievability of Temperature Profiles from Satellite Infrared Measurements
HUANG Jing, QIU Chongjian, MA Gang, ZHANG Yanwu
2006, 23(2): 224-234. doi: 10.1007/s00376-006-0224-x
A method is developed to assess retrievability, namely the retrieval potential for atmospheric temperature profiles, from satellite infrared measurements in clear-sky conditions. This technique is based upon generalized linear inverse theory and empirical orthogonal function analysis. Utilizing the NCEP global temperature reanalysis data in January and July from 1999 to 2003, the retrievabilities obtained with the Atmospheric Infrared Sounder (AIRS) and the High Resolution Infrared Radiation Sounder/3 (HIRS/3) sounding channel data are derived respectively for each standard pressure level on a global scale. As an incidental result of this study, the optimum truncation number in the method of generalized linear inverse is deduced too. The results show that the retrievabilities of temperature obtained with the two datasets are similar in spatial distribution and seasonal change characteristics. As for the vertical distribution, the retrievabilities are low in the upper and lower atmosphere, and high between 400 hPa and 850 hPa. For the geographical distribution, the retrievabilities are low in the low-latitude oceanic regions and in some regions in Antarctica, and relatively high in mid-high latitudes and continental regions. Compared with the HIRS/3 data, the retrievability obtained with the AIRS data can be improved by an amount between 0.15 and 0.40.
The Cloud Processes of a Simulated Moderate Snowfall Event in North China
LIN Wenshi, Cholaw BUEH
2006, 23(2): 235-242. doi: 10.1007/s00376-006-0235-7
The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event in North China that occurred during 20–21 December 2002. Thirteen experiments are performed to test the sensitivity of the simulation to the cloud physics with different cumulus parameterization schemes and different options for the Goddard cloud microphysics parameterization schemes. It is shown that the cumulus parameterization scheme has little to do with the simulation result. The results also show that there are only four classes of water substances, namely the cloud water, cloud ice, snow, and vapor, in the simulation of the moderate snowfall event. The analysis of the cloud microphysics budgets in the explicit experiment shows that the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow, and the Bergeron process of cloud ice are the dominant cloud microphysical processes in the simulation. The accretion of cloud water by snow and the deposition growth of the snow are equally important in the development of the snow.
A Generalized Layered Radiative Transfer Model in the Vegetation Canopy
DAI Qiudan, SUN Shufen
2006, 23(2): 243-257. doi: 10.1007/s00376-006-0243-7
In this paper, a generalized layered model for radiation transfer in canopy with high vertical resolution is developed. Differing from the two-stream approximate radiation transfer model commonly used in the land surface models, the generalized model takes into account the effect of complicated canopy morphology and inhomogeneous optical properties of leaves on radiation transfer within the canopy. In the model, the total leaf area index (LAI) of the canopy is divided into many layers. At a given layer, the influences of diffuse radiation angle distributions and leaf angle distributions on radiation transfer within the canopy are considered. The derivation of equations serving the model are described in detail, and these can deal with various diffuse radiation transfers in quite broad categories of canopy with quite inhomogeneous vertical structures and uneven leaves with substantially different optical properties of adaxial and abaxial faces of the leaves. The model is used to simulate the radiation transfer for canopies with horizontal leaves to validate the generalized model. Results from the model are compared with those from the two-stream scheme, and differences between these two models are discussed.
Impact of Topography and Land-Sea Distribution on East Asian Paleoenvironmental Patterns
ZHANG Zhongshi, WANG Huijun, GUO Zhengtang, JIANG Dabang
2006, 23(2): 258-266. doi: 10.1007/s00376-006-0258-0
Much geological research has illustrated the transition of paleoenvironmental patterns during the Cenozoic from a planetary-wind-dominant type to a monsoon-dominant type, indicating the initiation of the East Asian monsoon and inland-type aridity. However, there is a dispute about the causes and mechanisms of the transition, especially about the impact of the Himalayan/Tibetan Plateau uplift and the Paratethys Sea retreat. Thirty numerical sensitivity experiments under different land-sea distributions and Himalayan/Tibetan Plateau topography conditions are performed here to simulate the evolution of climate belts with emphasis on changes in the rain band, and these are compared with the changes in the paleoenvironmental patterns during the Cenozoic recovered by geological records. The consistency between simulations and the geological evidence indicates that both the Tibetan Plateau uplift and the Paratethys Sea retreat play important roles in the formation of the monsoon-dominant environmental pattern. Furthermore, the simulations show the monsoon-dominant environmental pattern comes into being when the Himalayan/Tibetan Plateau reaches 1000–2000 m high and the Paratethys Sea retreats to the Turan Plate.
Adjoint Sensitivity Experiments of a Meso- -scale Vortex in the Middle Reaches of the Yangtze River
2006, 23(2): 267-281. doi: 10.1007/s00376-006-0267-z
A relatively independent and small-scale heavy rainfall event occurred to the south of a slow eastwardmoving meso- -scale vortex. The analysis shows that a meso- -scale system is heavily responsible for the intense precipitation. An attempt to simulate it met with some failures. In view of its small scale, short lifetime and relatively sparse observations at the initial time, an adjoint model was used to examine the sensitivity of the meso- -scale vortex simulation with respect to initial conditions. The adjoint sensitivity indicates how small perturbations of initial model variables anywhere in the model domain can influence the central vorticity of the vortex. The largest sensitivity for both the wind and temperature perturbation is located below 700 hPa, especially at the low level. The largest sensitivity for the water vapor perturbation is located below 500 hPa, especially at the middle and low levels. The horizontal adjoint sensitivity for all variables is mainly located toward the upper reaches of the Yangtze River with respect to the simulated meso- -scale system in Hunan and Jiangxi provinces with strong locality. The sensitivity shows that warm cyclonic perturbations in the upper reaches can have a great effect on the development of the meso- -scale vortex. Based on adjoint sensitivity, forward sensitivity experiments were conducted to identify factors influencing the development of the meso- -scale vortex and to explore ways of improving the prediction. A realistic prediction was achieved by using adjoint sensitivity to modify the initial conditions and implanting a warm cyclone at the initial time in the upper reaches of the river with respect to the meso- -scale vortex, as is commonly done in tropical cyclone prediction.
Properties and Stability of a Meso-Scale Line-Form Disturbance
SHEN Xinyong, DING Yihui, ZHAO Nan
2006, 23(2): 282-290. doi: 10.1007/s00376-006-0282-0
By using the 3D dynamic equations for small- and meso-scale disturbances, an investigation is performed on the heterotropic instability (including symmetric instability and traversal-type instability) of a zonal line-like disturbance moving at any angle with respect to basic flow, arriving at the following results: (1) with linear shear available, the heterotropic instability of the disturbance will occur only when flow shearing happens in the direction of the line-like disturbance movement or in the direction perpendicular to the disturbance movement, with the heterotropic instability showing the instability of the internal inertial gravity wave; (2) in the presence of second-order non-linear shear, the disturbance of the heterotropic instability includes internal inertial gravity and vortex Rossby waves. For the zonal line-form disturbance under study, the vortex Rossby wave has its source in the second-order shear of meridional basic wind speed in the flow and propagates unidirectionally with respect to the meridional basic flow. As a mesoscale heterotropic instable disturbance, the vortex Rossby wave has its origin from the second shear of the flow in the direction perpendicular to the line-form disturbance and is independent of the condition in the direction parallel to the flow; (3) for general zonal line-like disturbances, if the second-order shear happens in the meridional wind speed, i.e., the second shear of the flow in the direction perpendicular to the line-form disturbance, then the heterotropic instability of the disturbance is likely to be the instability of a mixed Rossby–internal inertial gravity wave; (4) the symmetric instability is actually the instability of the internal inertial gravity wave. The second-order shear in the flow represents an instable factor for a symmetric-type disturbance; (5) the instability of a traversal-type disturbance is the instability of the internal inertial gravity wave when the basic flow is constant or only linearly sheared. With a second or nonlinear vertical shear of the basic flow taken into account, the instability of a traversal-type disturbance may be the instability of a mixed vortex Rossby – gravity wave.
Mass Concentration and Mineralogical Characteristics of Aerosol Particles Collected at Dunhuang During ACE-Asia
SHEN Zhenxing, CAO Junji, LI Xuxiang, Tomoaki OKUDA, WANG Yaqiang, ZHANG Xiaoye
2006, 23(2): 291-298. doi: 10.1007/s00376-006-0291-z
Measurements were performed in spring 2001 and 2002 to determine the characteristics of soil dust in the Chinese desert region of Dunhuang, one of the ground sites of the Asia-Pacific Regional Aerosol Characterization Experiment (ACE-Asia). The mean mass concentrations of total suspended particle matter during the spring of 2001 and 2002 were 317 μg m?3 and 307 μg m?3, respectively. Eleven dust storm events were observed with a mean aerosol concentration of 1095 μg m?3, while the non-dusty days with calm or weak wind speed had a background aerosol loading of 196 μgm?3 on average in the springtime. The main minerals detected in the aerosol samples by X-ray diffraction were illite, kaolinite, chlorite, quartz, feldspar, calcite and dolomite. Gypsum, halite and amphibole were also detected in a few samples. The mineralogical data also show that Asian dust is characterized by a kaolinite to chlorite (K/C) ratio lower than 1 whereas Saharan dust exhibits a K/C ratio larger than 2. Air mass back-trajectory analysis show that three families of pathways are associated with the aerosol particle transport to Dunhuang, but these have similar K/C ratios, which further demonstrates that the mineralogical characteristics of Asian dust are different from African dust.
Soil Moisture Retrieval from Satellite Images and Its Application to Heavy Rainfall Simulation in Eastern China
ZHAO Deming, SU Bingkai, ZHAO Ming
2006, 23(2): 299-316. doi: 10.1007/s00376-006-0299-4
The soil water index (SWI) from satellite remote sensing and the observational soil moisture from agricultural meteorological stations in eastern China are used to retrieve soil moisture. The analysis of correlation coefficient (CORR), root-mean-square-error (RMSE) and bias (BIAS) shows that the retrieved soil moisture is convincible and close to the observation. The method can overcome the difficulties in soil moisture observation on a large scale and the retrieved soil moisture may reflect the distribution of the real soil moisture objectively. The retrieved soil moisture is used as an initial scheme to replace initial conditions of soil moisture (NCEP) in the model MM5V3 to simulate the heavy rainfall in 1998. Three heavy rainfall processes during 13–14 June, 18–22 June, and 21–26 July 1998 in the Yangtze River valley are analyzed. The first two processes show that the intensity and location of simulated precipitation from SWI are better than those from NCEP and closer to the observed values. The simulated heavy rainfall for 21–26 July shows that the update of soil moisture initial conditions can improve the model’s performance. The relationship between soil moisture and rainfall may explain that the stronger rainfall intensity for SWI in the Yangtze River valley is the result of the greater simulated soil moisture from SWI prior to the heavy rainfall date than that from NCEP, and leads to the decline of temperature in the corresponding area in the heavy rainfall days. Detailed analysis of the heavy rainfall on 13–14 June shows that both land-atmosphere interactions and atmospheric circulation were responsible for the heavy rainfall, and it shows how the SWI simulation improves the simulation. The development of mesoscale systems plays an important role in the simulation regarding the change of initial soil moisture for SWI.
Radiative Forcing of SO2 and NOx: A Case Study in Beijing
SUN Zhian, WANG Xiaoyun, ZENG Xianning
2006, 23(2): 317-322. doi: 10.1007/s00376-006-0317-6
A case study was performed in Beijing in 2000 to observe concentrations of SO2 and NOx in the atmosphere and to evaluate their radiative impact. It was found that the concentrations of these gases are usually high in the morning due to a temperature inversion in the boundary layer. The average concentrations obtained from the observations are much higher than those used in the McClatchey reference atmosphere. The radiative impacts of these gases are calculated using a line-by-line radiative transfer model. The results show that the radiative forcing at the surface due to SO2 is 0.0576 W m?2 and that due to NOx is 0.0032Wm?2. These figures are almost compatible with that due to CFC11.