Advanced Search

2013 Vol. 30, No. 4

Display Method:
Cloud-Aerosol-Radiation (CAR) ensemble monitoring system: Overall accuracy and efficiency
Feng ZHANG, Xin-Zhong LIANG, ZENG Qingcun, Yu GU, and Shenjian SU
2013, 30(4): 955-973. doi: 10.1007/s00376-012-2171-z
The Cloud-Aerosol-Radiation (CAR) ensemble modeling system has recently been built to better understand cloud/aerosol/radiation processes and determine the uncertainties caused by different treatments of cloud/aerosol/radiation in climate models. The CAR system comprises a large scheme collection of cloud, aerosol, and radiation processes available in the literature, including those commonly used by the world's leading GCMs. In this study, detailed analyses of the overall accuracy and efficiency of the CAR system were performed. Despite the different observations used, the overall accuracies of the CAR ensemble means were found to be very good for both shortwave (SW) and longwave (LW) radiation calculations. Taking the percentage errors for July 2004 compared to ISCCP (International Satellite Cloud Climatology Project) data over (60N,60S as an example, even among the 448 CAR members selected here, those errors of the CAR ensemble means were only about -0.67% (-0.6 Wm-2) and -0.82% (-2.0 Wm-2) for SW and LW upward fluxes at the top of atmosphere, and 0.06% (0.1 Wm-2) and -2.12% (-7.8 Wm-2) for SW and LW downward fluxes at the surface, respectively. Furthermore, model SW frequency distributions in July 2004 covered the observational ranges entirely, with ensemble means located in the middle of the ranges. Moreover, it was found that the accuracy of radiative transfer calculations can be significantly enhanced by using certain combinations of cloud schemes for the cloud cover fraction, particle effective size, water path, and optical properties, along with better explicit treatments for unresolved cloud structures.
A new version of regional ocean reanalysis for coastal waters of China and adjacent seas
HAN Guijun, LI Wei, ZHANG Xuefeng, WANG Xidong, WU Xinrong, FU Hongli, ZHANG Xiaoshuang, ZHANG Lianxin, and LI Dong
2013, 30(4): 974-982. doi: 10.1007/s00376-012-2195-4
A new regional ocean reanalysis over multiple decades (1958-2008) for the coastal waters of China and adjacent seas has been completed by the National Marine Data and Information Service (NMDIS) under the CORA (China Ocean ReAnalysis) project. Evaluations were performed on three aspects: (1) the improvement of general reanalysis quality; (2) eddy structures; and (3) decadal variability of sea surface height anomalies (SSHAs). Results showed that the quality of the new reanalysis has been enhanced beyond: 40% (39% for temperature, 44% for salinity) in terms of the reduction of root mean squared errors (RMSEs) for which the reanalysis values were compared to observed values in the observational space. Compared to the trial version released to public in 2009, the new reanalysis is able to reproduce more detailed eddy structures as seen in satellite and in situ observations. EOF analysis of the reanalysis SSHAs showed that the new reanalysis reconstructs the leading modes of SSHAs much better than the old version. These evaluations suggest that the new CORA regional reanalysis represents a much more useful dataset for the community of the coastal waters of China and adjacent seas.
Incorporating groundwater dynamics and surface/subsurface runoff mechanisms in regional climate modeling over river basins in China
QIN Peihua, XIE Zhenghui,   YUAN Xing
2013, 30(4): 983-996. doi: 10.1007/s00376-012-2095-7
To improve the capability of numerical modeling of climate-groundwater interactions, a groundwater component and new surface/subsurface runoff schemes were incorporated into the regional climate model RegCM3, renamed RegCM3_Hydro. 20-year simulations from both models were used to investigate the effects of groundwater dynamics and surface/subsurface runoff parameterizations on regional climate over seven river basins in China. A comparison of results shows that RegCM3_Hydro reduced the positive biases of annual and summer (June, July, August) precipitation over six river basins, while it slightly increased the bias over the Huaihe River Basin in eastern China. RegCM3_Hydro also reduced the cold bias of surface air temperature from RegCM3 across years, especially for the Haihe and the Huaihe river basins, with significant bias reductions of 0.80C and 0.88C, respectively. The spatial distribution and seasonal variations of water table depth were also well captured. With the new surface and subsurface runoff schemes, RegCM3_Hydro increased annual surface runoff by 0.11-0.62 mm d-1 over the seven basins. Though previous studies found that incorporating a groundwater component tends to increase soil moisture due to the consideration of upward groundwater recharge, our present work shows that the modified runoff schemes cause less infiltration, which outweigh the recharge from groundwater and result in drier soil, and consequently cause less latent heat and more sensible heat over most of the basins.
An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model
XU Tengfei, YUAN Dongliang, YU Yongqiang, and ZHAO Xia
2013, 30(4): 997-1016. doi: 10.1007/s00376-013-2131-2
Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System model: Grid-point Version 2 (FGOALS-g2) are analyzed and compared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the southeastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between the SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.
An updated estimation of radiative forcing due to CO2 and its effect on global surface temperature change
ZHANG Hua, ZHANG Ruoyu, and SHI Guangyu
2013, 30(4): 1017-1024. doi: 10.1007/s00376-012-2204-7
New estimations of radiative forcing due to CO2 were calculated using updated concentration data of CO2 and a high-resolution radiative transfer model. The stratospheric adjusted radiative forcing (ARF) due to CO2 from the year 1750 to the updated year of 2010 was found to have increased to 1.95 Wm-2, which was 17% larger than that of the IPCCs 4th Assessment Report because of the rapid increase in CO2 concentrations since 2005. A new formula is proposed to accurately describe the relationship between the ARF of CO2 and its concentration. Furthermore, according to the relationship between the ARF and surface temperature change, possible changes in equilibrium surface temperature were estimated under the scenarios that the concentration of CO2 increases to 1.5, 2, 2.5, 3, 3.5 and 4 times that of the concentration in the year 2008. The result was values of +2.2℃, +3.8℃, +5.1℃, +6.2℃, +7.1℃ and +8.0℃ respectively, based on a middle-level climate sensitivity parameter of 0.8 K (Wm-2)-1, Non-equilibrium surface temperature changes over the next 500 years were also calculated under two kinds of emission scenarios (pulsed and sustained emissions) as a comparison, according to the Absolute Global Temperature change Potential (AGTP) of CO2. Results showed that CO2 will likely continue to contribute to global warming if no emission controls are imposed, and the effect on the Earth-atmosphere system will be difficult to restore to its original level.
Airborne measurements of the impact of ground-based glaciogenic cloud seeding on orographic precipitation
MIAO Qun, and Bart GEERTS
2013, 30(4): 1025-1038. doi: 10.1007/s00376-012-2128-2
Data from in situ probes and a vertically-pointing mm-wave Doppler radar aboard a research aircraft are used to study the cloud microphysical effect of glaciogenic seeding of cold-season orographic clouds. A previous study (Geerts et al., 2010) has shown that radar reflectivity tends to be higher during seeding periods in a shallow layer above the ground downwind of ground-based silver iodide (AgI) nuclei generators. This finding is based on seven flights, conducted over a mountain in Wyoming (the Unites States), each with a no-seeding period followed by a seeding period. In order to assess this impact, geographically fixed flight tracks were flown over a target mountain, both upwind and downwind of the AgI generators. This paper examines data from the same flights for further evidence of the cloud seeding impact. Composite radar data show that the low-level reflectivity increase is best defined upwind of the mountain crest and downwind of the point where the cloud base intersects the terrain. The main argument that this increase can be attributed to AgI seeding is that it is confined to a shallow layer near the ground where the flow is turbulent. Yet during two flights when clouds were cumuliform and coherent updrafts to flight level were recorded by the radar, the seeding impact was evident in the flight-level updrafts (about 610 m above the mountain peak) as a significant increase in the ice crystal concentration in all size bins. The seeding effect appears short-lived as it is not apparent just downwind of the crest.
Three-dimensional dynamic features of two Arctic oscillation types
SHI Ning, and BUEH Cholaw
2013, 30(4): 1039-1052. doi: 10.1007/s00376-012-2077-9
We investigated the differences between stratospheric (S-type) and tropospheric (T-type) Arctic Oscillation (AO) events on the intraseasonal time scale, in terms of their influences on surface air temperature (SAT) over the Northern Hemisphere and the dynamic features associated with their spatial structures. S-type AO events showed a stratosphere-troposphere coupled structure, while T-type events exhibited a stratosphere-troposphere uncoupled structure. The annular SAT anomalies over the Northern Hemisphere were found to be associated with S-type AO events, whereas such an annular feature was substantially destructed in T-type AO events. The different horizontal structures in the troposphere of the two types could mainly be attributed to transient eddy feedback forcing. As for the vertically uncoupled structure of T-type events, the underlying dynamical features that differentiate them from S-type events lie in the vertical propagation of zonally confined Rossby waves. In T-type events, the zonally confined Rossby wave packets can emanate from the significant height anomalies over Northeast Asia, where one vertical waveguide exists, and then propagate upward into the stratosphere. In contrast, such a vertical propagation was not evident for S-type events. The stratospheric anomalies associated with the upward injection of the zonally confined Rossby waves from the troposphere in T-type events can further induce the anomalous vertical propagation of planetary waves (PWs) through the interference between the climatological-mean PWs and anomalous PWs, leading to the final stratospheretroposphere uncoupled structure of T-type events.
The Influence of Freezing Drizzle on Wire Icing during Freezing Fog Events
ZHOU Yue, NIU Shengjie, and LÜ Jingjing
2013, 30(4): 1053-1069. doi: 10.1007/s00376-012-2030-y
Both direct and indirect effects of freezing drizzle on ice accretion were analyzed for ten freezing drizzle events during a comprehensive ice thickness, fog, and precipitation observation campaign carried out during the winter of 2008 and 2009 at Enshi Radar Station (3017'N, 10916'E), Hubei Province, China. The growth rate of ice thickness was 0.85 mm h-1 during the freezing drizzle period, while the rate was only 0.4 mm h-1 without sleet and freezing drizzle. The rain intensity, liquid water content (LWC), and diameter of freezing drizzle stayed at low values. The development of microphysical properties of fog was suppressed in the freezing drizzle period. A threshold diameter (Dc) was proposed to estimate the inuence of freezing drizzle on different size ranges of fog droplets. Fog droplets with a diameter less thanDc would be affected slightly by freezing drizzle, while larger fog droplets would be affected signicantly. Dc had a correlation with the average rain intensity, with a correlation coefficient of 0.78. The relationships among the microphysical properties of fog droplets were all positive when the effect of freezing drizzle was weak, while they became poor positive correlations, or even negative correlations during freezing drizzle period. The direct contribution of freezing drizzle to ice thickness was about 14.5%. Considering both the direct and indirect effects, we suggest that freezing drizzle could act as a catalyst causing serious icing conditions.
Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China
TAO Jun, CHENG Tiantao, ZHANG Renjian, CAO Junji, ZHU Lihua, WANG Qiyuan, LUO Lei, and ZHANG Leiming
2013, 30(4): 1070-1084. doi: 10.1007/s00376-012-2168-7
PM2.5 aerosols were sampled in urban Chengdu from April 2009 to January 2010, and their chemical compositions were characterized in detail for elements, water soluble inorganic ions, and carbonaceous matter. The annual average of PM2.5 was 165g m-3, which is generally higher than measurements in other Chinese cities, suggesting serious particulate pollution issues in the city. Water soluble ions contributed 43.5% to the annual total PM2.5 mass, carbonaceous aerosols including elemental carbon and organic carbon contributed 32.0%, and trace elements contributed 13.8%. Distinct daily and seasonal variations were observed in the mass concentrations of PM2.5 and its components, reflecting the seasonal variations of different anthropogenic and natural sources. Weakly acidic to neutral particles were found for PM2.5. Major sources of PM2.5 identified from source apportionment analysis included coal combustion, traffic exhaust, biomass burning, soil dust, and construction dust emissions. The low nitrate: sulfate ratio suggested that stationary emissions were more important than vehicle emissions. The reconstructed masses of ammonium sulfate, ammonium nitrate, particulate carbonaceous matter, and fine soil accounted for 79% of the total measured PM2.5 mass; they also accounted for 92% of the total measured particle scattering.
Statistical downscaling of summer temperature extremes in northern China
FAN Lijun, Deliang CHEN, FU Congbin, YAN Zhongwei
2013, 30(4): 1085-1095. doi: 10.1007/s00376-012-2057-0
Two approaches of statistical downscaling were applied to indices of temperature extremes based on percentiles of daily maximum and minimum temperature observations at Beijing station in summer during 19602008. One was to downscale daily maximum and minimum temperatures by using EOF analysis and stepwise linear regression at first, then to calculate the indices of extremes; the other was to directly downscale the percentile-based indices by using seasonal large-scale temperature and geo-potential height records. The cross-validation results showed that the latter approach has a better performance than the former. Then, the latter approach was applied to 48 meteorological stations in northern China. The cross-validation results for all 48 stations showed close correlation between the percentile-based indices and the seasonal large-scale variables. Finally, future scenarios of indices of temperature extremes in northern China were projected by applying the statistical downscaling to Hadley Centre Coupled Model Version 3 (HadCM3) simulations under the Representative Concentration Pathways 4.5 (RCP 4.5) scenario of the Fifth Coupled Model Inter-comparison Project (CMIP5). The results showed that the 90th percentile of daily maximum temperatures will increase by about 1.5C, and the 10th of daily minimum temperatures will increase by about 2C during the period 2011-35 relative to 1980-99.
Handling error propagation in sequential data assimilation using an evolutionary strategy
BAI Yulong, LI Xin, and HUANG Chunlin
2013, 30(4): 1096-1105. doi: 10.1007/s00376-012-2115-7
An evolutionary strategy-based error parameterization method that searches for the most ideal error adjustment factors was developed to obtain better assimilation results. Numerical experiments were designed using some classical nonlinear models (i.e., the Lorenz-63 model and the Lorenz-96 model). Crossover and mutation error adjustment factors of evolutionary strategy were investigated in four aspects: the initial conditions of the Lorenz model, ensemble sizes, observation covariance, and the observation intervals. The search for error adjustment factors is usually performed using trial-and-error methods. To solve this difficult problem, a new data assimilation system coupled with genetic algorithms was developed. The method was tested in some simplified model frameworks, and the results are encouraging. The evolutionary strategy-based error handling methods performed robustly under both perfect and imperfect model scenarios in the Lorenz-96 model. However, the application of the methodology to more complex atmospheric or land surface models remains to be tested.
Interaction between adjacent lightning discharges in clouds
WANG Yanhui, ZHANG Guangshu, ZHANG Tong, LI Yajun, WU Bin, and ZHANG Tinglong
2013, 30(4): 1106-1116. doi: 10.1007/s00376-012-2008-9
Using a 3D lightning radiation source locating system (LLS), three pairs of associated lightning discharges (two or more adjacent lightning discharges following an arbitrary rule that their space-gap was less than 10 km and their time-gap was less than 800 ms) were observed, and the interaction between associated lightning discharges was analyzed. All these three pairs of associated lightning discharges were found to involve three or more charge regions (the ground was considered as a special charge region). Moreover, at least one charge region involved two lightning discharges per pair of associated lightning discharges. Identified from electric field changes, the subsequent lightning discharges were suppressed by the prior lightning discharges. However, it is possible that the prior lightning discharge provided a remaining discharge channel to facilitate the subsequent lightning discharge. The third case provided evidence of this possibility. Together, the results suggested that, if the charges in the main negative charge region can be consumed using artificial lightning above the main negative charge regions, lightning accidents on the ground could be greatly reduced, on the condition that the height of the main negative charge region and the charge intensity of the lower positive charge region are suitable.
Revealing the effects of the El Nio-Southern oscillation on tropical cyclone intensity over the western North Pacific from a model sensitivity study
ZHOU Yang, JIANG Jing, Youyu LU, and HUANG Anning
2013, 30(4): 1117-1128. doi: 10.1007/s00376-012-2109-5
Five sets of model sensitivity experiments are conducted to investigate the influence of tropical cyclone (TC) genesis location and atmospheric circulation on interannual variability of TC intensity in the western North Pacific (WNP). In each experiment, bogus TCs are placed at different initial locations, and simulations are conducted with identical initial and boundary conditions. In the first three experiments, the specified atmospheric and SST conditions represent the mean conditions of El Nio, La Nio, and neutral years. The other two experiments are conducted with the specified atmospheric conditions of El Nio and La Nio years but with SSTs exchanged. The model results suggest that TCs generated in the southeastern WNP incurred more favorable environmental conditions for development than TCs generated elsewhere. The different TC intensities between El Nio and La Nio years are caused by difference in TC genesis location and low-level vorticity (VOR). VOR plays a significant role in the intensities of TCs with the same genesis locations between El Nio and La Nio years.
Probabilistic multimodel ensemble prediction of decadal variability of East Asian surface air temperature based on IPCC-AR5 near-term climate simulations
WANG Jia, ZHI Xiefei, and CHEN Yuwen
2013, 30(4): 1129-1142. doi: 10.1007/s00376-012-2182-9
Based on near-term climate simulations for IPCC-AR5 (The Fifth Assessment Report), probabilistic multimodel ensemble prediction (PMME) of decadal variability of surface air temperature in East Asia (20-50N, 100-145E) was conducted using the multivariate Gaussian ensemble kernel dressing (GED) methodology. The ensemble system exhibited high performance in hindcasting the decadal (1981-2010) mean and trend of temperature anomalies with respect to 196190, with a RPS of 0.94 and 0.88 respectively. The interpretation of PMME for future decades (2006-35) over East Asia was made on the basis of the bivariate probability density of the mean and trend. The results showed that, under the RCP4.5 (Representative Concentration Pathway 4.5 Wm-2) scenario, the annual mean temperature increases on average by about 1.1-1.2 K and the temperature trend reaches 0.6-0.7K (30 yr)-1. The pattern for both quantities was found to be that the temperature increase will be less intense in the south. While the temperature increase in terms of the 30-yr mean was found to be virtually certain, the results for the 30-yr trend showed an almost 25% chance of a negative value. This indicated that, using a multimodel ensemble system, even if a longer-term warming exists for 2006-35 over East Asia, the trend for temperature may produce a negative value. Temperature was found to be more affected by seasonal variability, with the increase in temperature over East Asia more intense in autumn (mainly), faster in summer to the west of 115E, and faster still in autumn to the east of 115E.
Detecting urban warming signals in climate records
HE Yuting, JIA Gensuo, HU Yonghong, and ZHOU Zijiang
2013, 30(4): 1143-1153. doi: 10.1007/s00376-012-2135-3
Determining whether air temperatures recorded at meteorological stations have been contaminated by the urbanization process is still a controversial issue at the global scale. With support of historical remote sensing data, this study examined the impacts of urban expansion on the trends of air temperature at 69 meteorological stations in Beijing, Tianjin, and Hebei Province over the last three decades. There were significant positive relations between the two factors at all stations. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in urban area around the meteorological stations likely contributed to the 0.13℃ rise in air temperature records in addition to regional climate warming. This study also provides a new approach to selecting reference stations based on remotely sensed urban fractions. Generally, the urbanization-induced warming contributed to approximately 44.1% of the overall warming trends in the plain region of study area during the past 30 years, and the regional climate warming was 0.30℃ (10 yr)-1 in the last three decades.
Microphysical characteristics of sea fog over the east coast of Leizhou Peninsula, China
ZHAO Lijuan, NIU Shengjie, ZHANG Yu, and XU Feng
2013, 30(4): 1154-1172. doi: 10.1007/s00376-012-1266-x
Microphysical properties of sea fog and correlations of these properties were analyzed based on the measurements from a comprehensive field campaign carried out from 15 March to 18 April 2010 on Donghai Island (2135N, 110325E) in Zhanjiang, Guangdong Province, China. There were four types of circulation pattern in favor of sea fog events in this area identified, and the synoptic weather pattern was found to influence the microphysical properties of the sea fogs. Those influenced by a warm sector in front of a cold front or the anterior part of low pressure were found to usually have a much longer duration, lower visibility, greater liquid water content, and bigger fog droplet sizes. A fog droplet number concentration of N1 cm-3 and liquid water content of L0.001 gm3 can be used to define sea fogs in this area. The type of fog droplet size distribution of the sea fog events was mostly monotonically-decreasing, with the spectrum width always being 20 m. The significant temporal variation of N was due in large part to the number concentration variation of fog droplets with radius 3 m. A strong collection process appeared when droplet spectrum width was 10 m, which subsequently led to the sudden increase of droplet spectrum width. The dominant physical process during the sea fog events was activation with subsequent condensational growth or reversible evaporation processes, but turbulent mixing also played an important role. The collection process occurred, but was not vital.
Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon
ZUO Jinqing, LI Weijing, SUN Chenghu, XU Li, and REN Hong-Li
2013, 30(4): 1173-1186. doi: 10.1007/s00376-012-2125-5
A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean. The mechanisms responsible for this linkage are diagnosed in the present study. It is shown that a barotropic wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer. This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains, which has a substantial effect on the EASM. Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing. Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO), the relationships between these two factors and the EASM are also examined. It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole, which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO. The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.
An evaluation of RegCM3_CRES for regional climate modeling in China
CHEN Feng, and XIE Zhenghui
2013, 30(4): 1187-1200. doi: 10.1007/s00376-012-2114-8
A 20-year simulation of regional climate over East Asia by the regional climate model RegCM3_CERES (Regional Climate Model version 3 coupled with the Crop Estimation through Resource and Environment Synthesis) was carried out and compared with observations and the original RegCM3 model to comprehensively evaluate its performance in simulating the regional climate over continental China. The results showed that RegCM3_CERES reproduced the regional climate at a resolution of 60 km over China by using ERA40 data as the boundary conditions, albeit with some limitations. The model captured the basic characteristics of the East Asian circulation, the spatial distribution of mean precipitation and temperature, and the daily characteristics of precipitation and temperature. However, it underestimated both the intensity of the monsoon in the monsoonal area and precipitation in southern China, overestimated precipitation in northern China, and produced a systematic cold temperature bias over most of continental China. Despite these limitations, it was concluded that the RegCM3_CERES model is able to simulate the regional climate over continental China reasonably well.
Model analysis of influences of aerosol mixing state upon its optical properties in East Asia
HAN Xiao, ZHANG Meigen, ZHU Lingyun, and XU Liren
2013, 30(4): 1201-1212. doi: 10.1007/s00376-012-2150-4
The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) on radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption properties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach 5 W m-2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal mixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.
Extended application of the conditional nonlinear optimal parameter perturbation method in the Common Land Model
WANG Bo, and HUO Zhenhua
2013, 30(4): 1213-1223. doi: 10.1007/s00376-012-2025-8
An extension of the conditional nonlinear optimal parameter perturbation (CNOP-P) method is applied to the parameter optimization of the Common Land Model (CoLM) for the North China Plain with the differential evolution (DE) method. Using National Meteorological Center (NMC) Reanalysis 6-hourly surface flux data and National Center for Environmental Prediction/Department of Energy (NCEP/DOE) Atmospheric Model Intercomparison Project II (AMIP-II) 6-hourly Reanalysis Gaussian Grid data, two experiments (I and II) were designed to investigate the impact of the percentages of sand and clay in the shallow soil in CoLM on its ability to simulate shallow soil moisture. A third experiment (III) was designed to study the shallow soil moisture and latent heat flux simultaneously. In all the three experiments, after the optimization stage, the percentages of sand and clay of the shallow soil were used to predict the shallow soil moisture in the following month. The results show that the optimal parameters can enable CoLM to better simulate shallow soil moisture, with the simulation results of CoLM after the double-parameter optimal experiment being better than the single-parameter optimal experiment in the optimization slot. Furthermore, the optimal parameters were able to significantly improve the prediction results of CoLM at the prediction stage. In addition, whether or not the atmospheric forcing and observational data are accurate can seriously affect the results of optimization, and the more accurate the data are, the more significant the results of optimization may be.
Impacts of two types of northward jumps of the East Asian upper-tropospheric jet stream in midsummer on rainfall in eastern China
LIN Zhongda
2013, 30(4): 1224-1234. doi: 10.1007/s00376-012-2105-9
The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced westerly to the north of the EAJS's axis (type A), while the second type is related to the weakened westerly within the EAJS's axis (type B). In this study, the impacts of these two types of northward jumps on rainfall in eastern China are investigated. Our results show that rainfall significantly increases in northern Northeast China and decreases in the Yellow River-Huaihe River valleys, as well as in North China, during the type A jump. As a result of the type B jump, rainfall is enhanced in North China and suppressed in the Yangtze River valley. The changes in rainfall in eastern China during these two types of northward jumps are mainly caused by the northward shifts of the ascending air flow that is directly related to the EAJS. Concurrent with the type A(B) jump, the EAJS-related ascending branch moves from the Yangtze-Huai River valley to northern Northeast (North) China when the EAJS's axis jumps from 40N to 55N (50N). Meanwhile, the type A jump also strengthens the Northeast Asian low in the lower troposphere, leading to more moisture transport to northern Northeast China. The type B jump, however, induces a northwestward extension of the lower-tropospheric western North Pacific subtropical high and more moisture transport to North China.