Advanced Search

2015 Vol. 32, No. 2

Display Method:
article
A Review of Seasonal Climate Prediction Research in China
WANG Huijun, FAN Ke, SUN Jianqi, LI Shuanglin, LIN Zhaohui, ZHOU Guangqing, CHEN Lijuan, LANG Xianmei, LI Fang, ZHU Yali, CHEN Hong, ZHENG Fei
2015, 32(2): 149-168. doi: 10.1007/s00376-014-0016-7
Abstract:
The ultimate goal of climate research is to produce climate predictions on various time scales. In China, efforts to predict the climate started in the 1930s. Experimental operational climate forecasts have been performed since the late 1950s, based on historical analog circulation patterns. However, due to the inherent complexity of climate variability, the forecasts produced at that time were fairly inaccurate. Only from the late 1980s has seasonal climate prediction experienced substantial progress, when the Tropical Ocean and Global Atmosphere project of the World Climate Research program (WCRP) was launched. This paper, following a brief description of the history of seasonal climate prediction research, provides an overview of these studies in China. Processes and factors associated with the climate variability and predictability are discussed based on the literature published by Chinese scientists. These studies in China mirror aspects of the climate research effort made in other parts of the world over the past several decades, and are particularly associated with monsoon research in East Asia. As the climate warms, climate extremes, their frequency, and intensity are projected to change, with a large possibility that they will increase. Thus, seasonal climate prediction is even more important for China in order to effectively mitigate disasters produced by climate extremes, such as frequent floods, droughts, and the heavy frozen rain events of South China.
A Review of Atmospheric Electricity Research in China
QIE Xiushu, ZHANG Yijun, YUAN Tie, ZHANG Qilin, ZHANG Tinglong, ZHU Baoyou, LU Weitao, MA Ming, YANG Jing, ZHOU Yunjun, FENG Guili
2015, 32(2): 169-191. doi: 10.1007/s00376-014-0003-z
Abstract:
The importance of atmospheric electricity research has been increasingly recognized in recent decades. Research on atmospheric electricity has been actively conducted since the 1980s in China. Lightning physics and its effects, as important branches of atmospheric electricity, have received more attention because of their significance both in scientific research and lightning protection applications. This paper reviews atmospheric electricity research based primarily on ground-based field experiments at different regions in China in the last decade. The results described in this review include physics and effects of lightning, rocket-triggered lightning and its physical processes of discharge, thunderstorm electricity on the Tibetan Plateau and its surrounding areas, lightning activity associated with severe convective storms, the effect and response of lightning to climate change, numerical simulation of thunderstorm electrification and lightning discharge, lightning detection and location techniques, and transient luminous events above thunderstorms.
Mesoscale Dynamics and Its Application in Torrential Rainfall Systems in China
GAO Shouting, TAN Zhemin, ZHAO Sixiong, LUO Zhexian, LU Hancheng, WANG Donghai, CUI Chunguang, CUI Xiaopeng, SUN Jianhua
2015, 32(2): 192-205. doi: 10.1007/s00376-014-0005-x
Abstract:
Progress over the past decade in understanding moisture-driven dynamics and torrential rain storms in China is reviewed in this paper. First, advances in incorporating moisture effects more realistically into theory are described, including the development of a new parameter, generalized moist potential vorticity (GMPV) and an improved moist ageostrophic Q vector (Qum). Advances in vorticity dynamics are also described, including the adoption of a parcel dynamic approach to investigate the development of the vertical vorticity of an air parcel; a novel theory of slantwise vorticity development, proposed because vorticity develops easily near steep isentropic surfaces; and the development of the convective vorticity vector (CVV) as an effective new tool. The significant progress in both frontal dynamics and wave dynamics is also summarized, including the geostrophic adjustment of initial unbalanced flow and the dual role of boundary layer friction in frontogenesis, as well as the interaction between topography and fronts, which indicate that topographic perturbations alter both frontogenesis and frontal structure. For atmospheric vortices, mixed wave/vortex dynamics has been extended to explain the propagation of spiral rainbands and the development of dynamical instability in tropical cyclones. Finally, we review wave and basic flow interaction in torrential rainfall, for which it was necessary to extend existing theory from large-scale flows to mesoscale fields, enriching our knowledge of mesoscale atmospheric dynamics.
Recent Advances in Monsoon Studies in China
XUE Feng, ZENG Qingcun, HUANG Ronghui, LI Chongyin, LU Riyu, ZHOU Tianjun
2015, 32(2): 206-229. doi: 10.1007/s00376-014-0015-8
Abstract:
This review provides a synopsis of the major progress that has been made in monsoon studies in China and to further bridge the gap between the Chinese and international meteorological community. It consists of seven major sections. After the introduction, the second section begins with the global monsoon systems and their seasonal variation, based on some new methods proposed in recent years. Besides, some major intraseasonal features of East Asian monsoon, including the onset of South China Sea summer monsoon are discussed. In the third section, we review the interactions between ENSO and the East Asian monsoon, focusing in particular on the results of Chinese meteorologists that indicate the influence of ENSO on the East Asian summer monsoon (EASM) is obviously different from that on the tropical monsoon. Besides the tropical Pacific, other ocean basins, such as the Indian Ocean and the Atlantic Ocean, are also important to the East Asian monsoon, and this topic is discussed in the fourth section. In the fifth section, we address the role of land surface processes in East Asian monsoon. For example, we describe work that has shown more snow cover in spring on the Tibetan Plateau is followed by a weakened EASM and more summer rainfall in the Yangtze River valleys. The sixth section focuses on the influence of atmospheric circulation in the Southern Hemisphere (SH) on EASM, demonstrating how the signal from the SH is likely to provide new clues for the seasonal forecasting of summer rainfall in China. Finally, in the seventh section, we concentrate on the interdecadal variations of EASM. In particular, we look at a significant interdecadal variation that occurred at the end of the 1970s, and how our understanding of this feature could affect forecasting ability.
Advances in Cloud Physics and Weather Modification in China
GUO Xueliang, FU Danhong, LI Xingyu, HU Zhaoxia, LEI Henchi, XIAO Hui, HONG Yanchao
2015, 32(2): 230-249. doi: 10.1007/s00376-014-0006-9
Abstract:
The capabilities of cloud-resolving numerical models, observational instruments and cloud seeding have improved greatly over recent years in China. The subject of this review focuses on the main progresses made in China in the areas of cloud modeling, field observations, aerosol-cloud interactions, the effects of urbanization on cloud and precipitation, and weather modification. Well-equipped aircraft and ground-based advanced Doppler and polarized radars have been rapidly applied in cloud-seeding operations. The combined use of modern techniques such as the Global Positioning System, remote sensing, and Geographical Information Systems has greatly decreased the blindness and uncertainties in weather-modification activities. Weather-modification models based on state-of-the-art cloud-resolving models are operationally run at the National Weather Modification Centre in China for guiding weather-modification programs. Despite important progress having been made, many critical issues or challenges remain to be solved, or require stronger scientific evidence and support, such as the chain of physical events involved in the effects induced by cloud seeding. Current important progresses in measurements and seeding techniques provide the opportunity and possibility to reduce these deficiencies. Long-term scientific projects aimed at reducing these key uncertainties are extremely urgent and important for weather-modification activities in China.
Paleoclimate Modeling in China: A Review
JIANG Dabang, YU Ge, ZHAO Ping, CHEN Xing, LIU Jian, LIU Xiaodong, WANG Shaowu, ZHANG Zhongshi, YU Yongqiang, LI Yuefeng, JIN Liya, XU Ying, JU Lixia, ZHOU Tianjun, YAN Xiaodong
2015, 32(2): 250-275. doi: 10.1007/s00376-014-0002-0
Abstract:
This paper provides a review of paleoclimate modeling activities in China. Rather than attempt to cover all topics, we have chosen a few climatic intervals and events judged to be particularly informative to the international community. In historical climate simulations, changes in solar radiation and volcanic activity explain most parts of reconstructions over the last millennium prior to the industrial era, while atmospheric greenhouse gas concentrations play the most important role in the 20th century warming over China. There is a considerable model-data mismatch in the annual and boreal winter temperature change over China during the mid-Holocene [6000 years before present (ka BP)], while coupled models with an interactive ocean generally perform better than atmospheric models. For the Last Glacial Maximum (21 ka BP), climate models successfully reproduce the surface cooling trend over China but fail to reproduce its magnitude, with a better performance for coupled models. At that time, reconstructed vegetation and western Pacific sea surface temperatures could have significantly affected the East Asian climate, and environmental conditions on the Qinghai-Tibetan Plateau were most likely very different to the present day. During the late Marine Isotope Stage 3 (30-40 ka BP), orbital forcing and Northern Hemisphere glaciation, as well as vegetation change in China, were likely responsible for East Asian climate change. On the tectonic scale, the Qinghai-Tibetan Plateau uplift, the Tethys Sea retreat, and the South China Sea expansion played important roles in the formation of the East Asian monsoon-dominant environment pattern during the late Cenozoic.