Akinsanola, A. A., G. J. Kooperman, K. A. Reed, A. G. Pendergrass, and W. M. Hannah, 2020: Projected changes in seasonal precipitation extremes over the United States in CMIP6 simulations. Environmental Research Letters, 15 (10), 104078, https://doi.org/10.1088/1748-9326/abb397.
Alexander, L. V., and J. M. Arblaster, 2017: Historical and projected trends in temperature and precipitation extremes in Australia in observations and CMIP5. Weather and Climate Extremes, 15, 34−56, https://doi.org/10.1016/j.wace.2017.02.001.
Ayugi, B., V. Dike, H. Ngoma, H. Babaousmail, R. Mumo, and V. Ongoma, 2021: Future changes in precipitation extremes over East Africa based on CMIP6 models. Water, 13, 2358, https://doi.org/10.3390/w13172358.
Bao, T., G. S. Jia, and X. Y. Xu, 2022: Warming enhances dominance of vascular plants over cryptogams across northern wetlands. Global Change Biology, 28 (13), 4097−4109, https://doi.org/10.1111/gcb.16182.
Callahan, C. W., and J. S. Mankin, 2022: Globally unequal effect of extreme heat on economic growth. Science Advances, 8 (43), eadd3726, https://doi.org/10.1126/sciadv.add3726.
Chang, M. Y., B. Liu, C. Martinez-Villalobos, G. Y. Ren, S. F. Li, and T. J. Zhou, 2020: Changes in extreme precipitation accumulations during the warm season over continental China. J. Climate, 33 (24), 10 799−10 811, https://doi.org/10.1175/JCLI-D-20-0616.1.
Chen, H. P., and J. Q. Sun, 2021: Significant increase of the global population exposure to increased precipitation extremes in the future. Earth's Future, 9, e2020EF001941, https://doi.org/10.1029/2020EF001941.
Chen, L., and T. W. Ford, 2021: Effects of 0.5°C less global warming on climate extremes in the contiguous United States. Climate Dyn., 57 (1−2), 303−319, https://doi.org/10.1007/s00382-021-05717-9.
Elad, Y., and I. Pertot, 2014: Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement, 28 (1), 99−139, https://doi.org/10.1080/15427528.2014.865412.
Fan, X. W., C. Y. Miao, Q. Y. Duan, C. W. Shen, and Y. Wu, 2021: Future climate change hotspots under different 21st century warming scenarios. Earth's Future, 9 (6), e2021EF002027, https://doi.org/10.1029/2021EF002027.
Ge, F., S. P. Zhu, H. L. Luo, X. F. Zhi, and H. Wang, 2021: Future changes in precipitation extremes over Southeast Asia: Insights from CMIP6 multi-model ensemble. Environmental Research Letters, 16 (2), 024013, https://doi.org/10.1088/1748-9326/abd7ad.
Ge, F., and Coauthors, 2019: Risks of precipitation extremes over Southeast Asia: Does 1.5°C or 2°C global warming make a difference? Environmental Research Letters, 14 (4), 044015, https://doi.org/10.1088/1748-9326/aaff7e.
Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res.: Atmos., 113 (D6), D06104, https://doi.org/10.1029/2007JD008972.
Gu, L., J. Chen, J. B. Yin, S. C. Sullivan, H. M. Wang, S. L. Guo, L. P. Zhang, and J. S. Kim, 2020: Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates. Hydrology and Earth System Sciences, 24 (1), 451−472, https://doi.org/10.5194/hess-24-451-2020.
Hawcroft, M., E. Walsh, K. Hodges, and G. Zappa, 2018: Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environmental Research Letters, 13 (12), 124006, https://doi.org/10.1088/1748-9326/aaed59.
Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90 (8), 1095−1108, https://doi.org/10.1175/2009BAMS2607.1.
Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37 (1−2), 407−418, https://doi.org/10.1007/s00382-010-0810-6.
Huang, J. L., and Coauthors, 2019: Effect of fertility policy changes on the population structure and economy of China: From the perspective of the shared socioeconomic pathways. Earth's Future, 7, 250−265, https://doi.org/10.1029/2018EF000964.
IPCC. 2018: Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Eds, Masson-Delmotte, V., et al, 32 pp.
Jiang, T., and Coauthors, 2017: National and provincial population projected to 2100 under the Shared Socioeconomic Pathways in China. Climate Change Research, 13, 128−137, https://doi.org/10.12006/j.issn.1673-1719.2016.249.
Kotz, M., A. Levermann, and L. Wenz, 2022: The effect of rainfall changes on economic production. Nature, 601 (7892), 223−227, https://doi.org/10.1038/s41586-021-04283-8.
Lehner, F., C. Deser, N. Maher, J. Marotzke, E. M. Fischer, L. Brunner, R. Knutti, and E. Hawkins, 2020: Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth System Dynamics, 11 (2), 491−508, https://doi.org/10.5194/esd-11-491-2020.
Li, J., Z. F. Liu, Z. J. Yao, and R. Wang, 2019: Comprehensive assessment of Coupled Model Intercomparison Project Phase 5 global climate models using observed temperature and precipitation over mainland Southeast Asia. International Journal of Climatology, 39 (10), 4139−4153, https://doi.org/10.1002/joc.6064.
Li, S. H., F. E. L. Otto, L. J. Harrington, S. N. Sparrow, and D. C. H. Wallom, 2020: A pan-south-America assessment of avoided exposure to dangerous extreme precipitation by limiting to 1.5°C warming. Environmental Research Letters, 15, 054005, https://doi.org/10.1088/1748-9326/ab50a2.
Liu, Y. J., J. Chen, T. Pan, Y. H. Liu, Y. H. Zhang, Q. S. Ge, P. Ciais, and J. Penuelas, 2020: Global socioeconomic risk of precipitation extremes under climate change. Earth’s Future, 8 (9), e2019EF001331, https://doi.org/10.1029/2019ef001331.
Lu, C. H., J. Jiang, R. D. Chen, S. Ullah, R. Yu, F. C. Lott, S. F. B. Tett, and B. W. Dong, 2021: Anthropogenic influence on 2019 May–June extremely low precipitation in southwestern China. Bull. Amer. Meteor. Soc., 102 (1), S97−S102, https://doi.org/10.1175/BAMS-D-20-0128.1.
Min, S.-K., S. Y. Jo, M. G. Seong, Y. H. Kim, S. W. Son, Y. H. Byun, F. C. Lott, and P. A. Stott, 2022: Human contribution to the 2020 summer successive hot-wet extremes in South Korea. Bull. Amer. Meteor. Soc., 103, S90−S97, https://doi.org/10.1175/BAMS-D-21-0144.1.
Nanding, N., and Coauthors, 2020: Anthropogenic influences on 2019 July precipitation extremes over the mid–lower reaches of the Yangtze River. Frontiers in Environmental Science, 8, 603061, https://doi.org/10.3389/fenvs.2020.603061.
Nangombe, S., T. J. Zhou, L. X. Zhang, and W. X. Zhang, 2020: Attribution of the 2018 October–December drought over south southern Africa. Bull. Amer. Meteor. Soc., 101 (1), S135−S140, https://doi.org/10.1175/BAMS-D-19-0179.1.
Ngai, S. T., L. Juneng, F. Tangang, J. X. Chung, E. Salimun, M. L. Tan, and S. Amalia, 2020: Future projections of Malaysia daily precipitation characteristics using bias correction technique. Atmospheric Research, 240, 104926, https://doi.org/10.1016/j.atmosres.2020.104926.
Nooni, I. K., D. F. T. Hagan, W. Ullah, J. Lu, S. J. Li, N. A. Prempeh, G. T. Gnitou, and K. T. C. Lim Kam Sian, 2022: Projections of drought characteristics based on the CNRM-CM6 model over Africa. Agriculture, 12, 495, https://doi.org/10.3390/agriculture12040495.
O’Neill, B. C., and Coauthors, 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9 (9), 3461−3482, https://doi.org/10.5194/gmd-9-3461-2016.
Overland, I., H. F. Sagbakken, H.-Y. Chan, M. Merdekawati, B. Suryadi, N. A. Utama, and R. Vakulchuk, 2021: The ASEAN Climate and Energy Paradox. Energy and Climate Change, 2, 100019, https://doi.org/10.1016/j.egycc.2020.100019.
Park, C. E., and S. Jeong, 2022 Population exposure projections to intensified summer heat. Earth’s Future, 10 (2), e2021EF002602, https://doi.org/10.1029/2021EF002602.
Peng, D. D., T. J. Zhou, L. X. Zhang, W. X. Zhang, and X. L. Chen, 2020: Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5°C less global warming. Climate Dyn., 54, 543−560, https://doi.org/10.1007/s00382-019-05014-6.
Peng, L., and Z. H. Li, 2021: Ensemble flood risk assessment in the Yangtze River economic belt under CMIP6 SSP-RCP scenarios. Sustainability, 13, 12097, https://doi.org/10.3390/su132112097.
Philip, S., and Coauthors, 2018: Attribution analysis of the Ethiopian drought of 2015. J. Climate, 31, 2465−2486, https://doi.org/10.1175/JCLI-D-17-0274.1.
Qian, C., Y. B. Ye, W. X. Zhang, and T. J. Zhou, 2022: Heavy rainfall event in mid-August 2020 in southwestern China: Contribution of anthropogenic forcings and atmospheric circulation. Bull. Amer. Meteor. Soc., 103 (3), S111−S117, https://doi.org/10.1175/BAMS-D-21-0233.1.
Qin, X. S., and C. Dai, 2022: Comparison of different quantile delta mapping schemes in frequency analysis of precipitation extremes over mainland Southeast Asia under climate change. J. Hydrol., 606, 127421, https://doi.org/10.1016/j. jhydrol.2021.127421.
Ruosteenoja, K., T. Markkanen, A. Venäläinen, P. Räisänen, and H. Peltola, 2018: Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dyn., 50 (3), 1177−1192, https://doi.org/10.1007/s00382-017-3671-4.
Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). C. B. Field et al., Eds., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 109−230.
Seneviratne, S. I., and Coauthors, 2021: Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1513–1766, https://doi.org/10.1017/9781009157896.013.
Supari, and Coauthors, 2020: Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations. Environmental Research, 184, 109350, https://doi.org/10.1016/j.envres.2020.109350.
Tang, B., W. T. Hu, and A. M. Duan, 2021a: Assessment of extreme precipitation indices over Indochina and South China in CMIP6 models. J. Climate, 34 (18), 7507−7524, https://doi.org/10.1175/JCLI-D-20-0948.1.
Tang, B., W. T. Hu, and A. M. Duan, 2021b: Future projection of extreme precipitation indices over the Indochina Peninsula and South China in CMIP6 models. J. Climate, 34 (21), 8793−8811, https://doi.org/10.1175/JCLI-D-20-0946.1.
Tang, B., W. T. Hu, A. M. Duan, K. L. Gao, and Y. Z. Peng, 2022a: Reduced risks of temperature extremes from 0.5°C less global warming in the Earth’s three poles. Earth’s Future, 10, e2021EF002525, https://doi.org/10.1029/2021EF002525.
Tang, H. S., and Coauthors, 2022b: Reduced probability of 2020 June–July persistent heavy Mei-yu rainfall event in the middle to lower reaches of the Yangtze River basin under anthropogenic forcing. Bull. Amer. Meteor. Soc., 103 (3), S83−S89, https://doi.org/10.1175/BAMS-D-21-0167.1.
Tuholske, C., K. Caylor, C. Funk, A. Verdin, S. Sweeney, K. Grace, P. Peterson, and T. Evans, 2021: Global urban population exposure to extreme heat. Proceedings of the National Academy of Sciences of the United States of America, 118 (41), e2024792118, https://doi.org/10.1073/PNAS.2024792118.
Ullah, S., and Coauthors, 2022: Future population exposure to daytime and nighttime heat waves in South Asia. Earth's Future, 10 (5), e2021EF002511, https://doi.org/10.1029/2021EF002511.
Wang, H. L., S. D. Schubert, R. D. Koster, and Y. H. Chang, 2019a: Attribution of the 2017 northern high plains drought. Bull. Amer. Meteor. Soc., 100, S25−S29, https://doi.org/10.1175/BAMS-D-18-0115.1.
Wang, S. S., J. P. Huang, and X. Yuan, 2021: Attribution of 2019 extreme spring–early summer hot drought over Yunnan in southwestern China. Bull. Amer. Meteor. Soc., 102 (1), S91−S96, https://doi.org/10.1175/BAMS-D-20-0121.1.
Wang, X. X., D. B. Jiang, and X. M. Lang, 2019b: Extreme temperature and precipitation changes associated with four degree of global warming above pre-industrial levels. International Journal of Climatology, 39, 1822−1838, https://doi.org/10.1002/joc.5918.
Wartenburger, R., M. Hirschi, M. G. Donat, P. Greve, A. J. Pitman, and S. I. Seneviratne, 2017: Changes in regional climate extremes as a function of global mean temperature: An interactive plotting framework. Geoscientific Model Development, 10, 3609−3634, https://doi.org/10.5194/gmd-10-3609-2017.
Yao, J. Q., Y. N. Chen, J. Chen, Y. Zhao, D. Tuoliewubieke, J. G. Li, L. M. Yang, and W. Y. Mao, 2021: Intensification of extreme precipitation in arid central Asia. J. Hydrol., 598, 125760, https://doi.org/10.1016/j.jhydrol.2020.125760.
Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93 (9), 1401−1415, https://doi.org/10.1175/bams-d-11-00122.1.
Yu, L. J., and S. Y. Zhong, 2021: Trends in arctic seasonal and extreme precipitation in recent decades. Theor. Appl. Climatol., 145 (3−4), 1541−1559, https://doi.org/10.1007/s00704-021-03717-7.
Zhai, J. Q., and Coauthors, 2020: Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research, 246, 105111, https://doi.org/10.1016/j.atmosres.2020.105111.
Zhang, W. X., and T. J. Zhou, 2019: Significant increases in extreme precipitation and the associations with global warming over the global land monsoon regions. J. Climate, 32, 8465−8488, https://doi.org/10.1175/JCLI-D-18-0662.1.
Zhang, W. X., and T. J. Zhou, 2020: Increasing impacts from extreme precipitation on population over China with global warming. Science Bulletin, 65 (3), 243−252, https://doi.org/10.1016/j.scib.2019.12.002.
Zhang, W. X., T. J. Zhou, L. W. Zou, L. X. Zhang, and X. L. Chen, 2018: Reduced exposure to extreme precipitation from 0.5°C less warming in global land monsoon regions. Nature Communications, 9 (1), 3153, https://doi.org/10.1038/s41467-018-05633-3.
Zhang, W. X., and Coauthors, 2020: Anthropogenic influence on 2018 summer persistent heavy rainfall in central western China. Bull. Amer. Meteor. Soc., 101 (1), S65−S70, https://doi.org/10.1175/BAMS-D-19-0147.1.
Zhang, X. B., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change, 2, 851−870, https://doi.org/10.1002/wcc.147.
Zhou, J., and Coauthors, 2022: China's socioeconomic and CO2 status concerning future land-use change under the shared socioeconomic pathways. Sustainability, 14 (5), 3065, https://doi.org/10.3390/su14053065.
Zhu, H. H., Z. H. Jiang, and L. Li, 2021: Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Science Bulletin, 66 (24), 2528−2537, https://doi.org/10.1016/j.scib.2021.07.026.
Zhu, S. P., F. Ge, Y. Fan, L. Zhang, F. Sielmann, K. Fraedrich, and X. F. Zhi, 2020: Conspicuous temperature extremes over Southeast Asia: Seasonal variations under 1.5°C and 2°C global warming. Climatic Change, 160, 343−360, https://doi.org/10.1007/s10584-019-02640-1.