Aksoy, A., F. Q. Zhang, and J. W. Nielsen-Gammon, 2006: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, https://doi.org/10.1029/2006GL026186.
Bai, L. Q., and Coauthors, 2017: An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 tornado in China Produced by the landfalling Typhoon Mujigae (2015). Bull. Amer. Meteor. Soc., 98, 2619−2640, https://doi.org/10.1175/BAMS-D-16-0015.1.
Baker, L., A. C. Rudd, S. Migliorini, and R. N. Bannister, 2014: Representation of model error in a convective-scale ensemble prediction system. Nonlinear Processes in Geophysics, 21, 19−39, https://doi.org/10.5194/npg-21-19-2014.
Barker, D. M., 2005: Southern high-latitude ensemble data assimilation in the Antarctic Mesoscale prediction system. Mon. Wea. Rev., 133, 3431−3449, https://doi.org/10.1175/MWR3042.1.
Beljaars, A. C. M., 1995: The parametrization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255−270, https://doi.org/10.1002/qj.49712152203.
Bengtsson, L., J. Dias, S. Tulich, M. Gehne, and J.-W. Bao, 2021: A stochastic parameterization of organized tropical convection using cellular automata for global forecasts in NOAA’s Unified Forecast System. Journal of Advances in Modeling Earth Systems, 13, e2020MS002260, https://doi.org/10.1029/2020MS002260.
Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603−626, https://doi.org/10.1175/2008JAS2677.1.
Berner, J., K. R. Fossell, S.-Y. Ha, J. P. Hacker, and C. Snyder, 2015: Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations. Mon. Wea. Rev., 143, 1295−1320, https://doi.org/10.1175/MWR-D-14-00091.1.
Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 3706−3721, https://doi.org/10.1175/MWR-D-12-00031.1.
Brown, A. R., and A. L. M. Grant, 1997: Non-local mixing of momentum in the convective boundary layer. Bound.-Layer Meteorol., 84, 1−22, https://doi.org/10.1023/A:1000388830859.
Buizza, R., 2014: The TIGGE global, medium-range ensembles. ECMWF Technical Memoranda 739, 53 pp.
Candille, G., and O. Talagrand, 2005: Evaluation of probabilistic prediction systems for a scalar variable. Quart. J. Roy. Meteor. Soc., 131, 2131−2150, https://doi.org/10.1256/qj.04.71.
Caron, J. F., Y. Michel, T. Montmerle, and É. Arbogast, 2019: Improving background error covariances in a 3D ensemble-variational data assimilation system for regional NWP. Mon. Wea. Rev., 147, 135−151, https://doi.org/10.1175/MWR-D-18-0248.1.
Charney, J. G., and N. A. Phillips, 1953: Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J. Atmos. Sci., 10, 71−99, https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2.
Chen, D. H., and Coauthors, 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Science Bulletin, 53, 3433−3445, https://doi.org/10.1007/s11434-008-0494-z.
Chen, S. Y., W. Zhao, M. Donelan, and H. L. Tolman, 2013: Directional wind-wave coupling in fully coupled atmosphere-wave-ocean models: Results from CBLAST-hurricane. J. Atmos. Sci., 70, 3198−3215, https://doi.org/10.1175/JAS-D-12-0157.1.
Chen, Z. T., C. Z. Zhang, Y. Y. Huang, Y. R. Feng, S. X. Zhong, G. F. Dai, D. S. Xu, and Z. L. Yang, 2014: Track of Super Typhoon Haiyan predicted by a typhoon model for the South China Sea. Journal of Meteorological Research, 28, 510−523, https://doi.org/10.1007/s13351-014-3269-2.
Christensen, H. M., I. M. Moroz, and T. N. Palmer, 2015: Stochastic and perturbed parameter representations of model uncertainty in convection parameterization. J. Atmos. Sci., 72, 2525−2544, https://doi.org/10.1175/JAS-D-14-0250.1.
Christensen, H. M., S.-J. Lock, I. M. Moroz, and T. N. Palmer, 2017: Introducing independent patterns into the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme. Quart. J. Roy. Meteor. Soc., 143, 2168−2181, https://doi.org/10.1002/qj.3075.
Davis, C., W. Wang, J. Dudhia, and R. Torn, 2010: Does increased horizontal resolution improve hurricane wind forecasts. Wea. Forecasting, 25, 1826−1841, https://doi.org/10.1175/2010WAF2222423.1.
DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving. Bull. Amer. Meteor. Soc., 95, 387−398, https://doi.org/10.1175/BAMS-D-12-00240.1.
Di, Z. H., and Coauthors, 2015: Assessing WRF model parameter sensitivity: A case study with 5 day summer precipitation forecasting in the Greater Beijing area. Geophys. Res. Lett., 42, 579−587, https://doi.org/10.1002/2014GL061623.
Di, Z. H., Q. Y. Duan, W. Gong, A. Z. Ye, and C. Y. Miao, 2017: Parametric sensitivity analysis of precipitation and temperature based on multi-uncertainty quantification methods in the Weather Research and Forecasting model. Science China Earth Sciences, 60, 876−898, https://doi.org/10.1007/s11430-016-9021-6.
Ding, Y. H., 2005: Advanced Synoptic Meteorology. 2nd ed. China Meteorological Press, 585 pp. (in Chinese)
Duan, W. S., and F. F. Zhou, 2013: Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A: Dynamic Meteorology and Oceanography, 65, 18452, https://doi.org/10.3402/tellusa.v65i0.18452.
Duan, Y. H., and Coauthors, 2019: Landfalling tropical cyclone research project (LTCRP) in China. Bull. Amer. Meteor. Soc., 100, ES447−ES472, https://doi.org/10.1175/BAMS-D-18-0241.1.
Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461−2480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.
Elsberry, L. E., L. S. Chen, J. Davidson, R. Rogers, Y. Q. Wang, and L. G. Wu, 2013: Advances in understanding and forecasting rapidly changing phenomena in tropical cyclones. Tropical Cyclone Research and Review, 2, 13−24, https://doi.org/10.6057/2013TCRR01.02.
Emanuel, K. A., 2018: 100 years of progress in tropical cyclone research. Meteor. Monogr., 59, 15.1−15.68, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.
Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585−605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.
Emanuel, K. A., and F. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 3739−3747, https://doi.org/10.1175/JAS-D-16-0100.1.
Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The hurricane forecast improvement project. Bull. Amer. Meteor. Soc., 94, 329−343, https://doi.org/10.1175/BAMS-D-12-00071.1.
Gilbert, G., 1884: Finley's tornado predictions. Amer. Meteor. J., 1, 166−172.
Goldenberg, S. B., S. G. Gopalakrishnan, V. Tallapragada, T. Quirino, F. Marks Jr., S. Trahan, X. J. Zhang, and R. Atlas, 2015: The 2012 triply nested, high-resolution operational version of the Hurricane Weather Research and Forecasting Model (HWRF): Track and intensity forecast verifications. Wea. Forecasting, 30, 710−729, https://doi.org/10.1175/WAF-D-14-00098.1.
Gu, H., C. H. Qian, S. Z. Gao, and C. Y. Xiang, 2017: The impact of tropical cyclones on China in 2016. Tropical Cyclone Research and Review, 6, 1−12, https://doi.org/10.6057/2017TCRRh1.01.
Hacker, J. P., C. Snyder, S.-Y. Ha, and M. Pocernich, 2011a: Linear and non-linear response to parameter variations in a mesoscale model. Tellus A, 63, 429−444, https://doi.org/10.1111/j.1600-0870.2010.00505.x.
Hacker, J. P., and Coauthors, 2011b: The U. S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus A, 63, 625−641, https://doi.org/10.1111/j.1600-0870.2010.00497.x.
Hamill, T. M., M. J. Brennan, B. Brown, M. DeMaria, E. N. Rappaport, and Z. Toth, 2012: NOAA’s future ensemble-based hurricane forecast products. Bull. Amer. Meteor. Soc., 93, 209−220, https://doi.org/10.1175/2011BAMS3106.1.
Han, J., and H.-L. Pan, 2006: Sensitivity of hurricane intensity forecast to convective momentum transport parameterization. Mon. Wea. Rev., 134, 664−674, https://doi.org/10.1175/MWR3090.1.
Han, J.-Y., S.-Y. Hong, and Y. Kwon, 2020: The Performance of a Revised Simplified Arakawa-Schubert (SAS) Convection Scheme in the Medium-Range Forecasts of the Korean Integrated Model (KIM). Wea. Forecasting, 35, 1113−1128, https://doi.org/10.1175/WAF-D-19-0219.1.
Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322−2339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103−120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225−1242, https://doi.org/10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2.
Jankov, I., and Coauthors, 2017: A performance comparison between multiphysics and stochastic approaches within a North American RAP ensemble. Mon. Wea. Rev., 145, 1161−1179, https://doi.org/10.1175/MWR-D-16-0160.1.
Jankov, I., J. Beck, J. Wolff, M. Harrold, J. B. Olson, T. Smirnova, C. Alexander, and J. Berner, 2019: Stochastically perturbed parameterizations in an HRRR-based ensemble. Mon. Wea. Rev., 147, 153−173, https://doi.org/10.1175/MWR-D-18-0092.1.
Judt, F., and S. S. Chen, 2015: A new aircraft hurricane wind climatology and applications in assessing the predictive skill of tropical cyclone intensity using high-resolution ensemble forecasts. Geophys. Res. Lett., 42, 6043−6050, https://doi.org/10.1002/2015GL064609.
Judt, F., and S. S. Chen, 2016: Predictability and dynamics of tropical cyclone rapid intensification deduced from high-resolution stochastic ensembles. Mon. Wea. Rev., 144, 4395−4420, https://doi.org/10.1175/MWR-D-15-0413.1.
Judt, F., S. S. Chen, and J. Berner, 2016: Predictability of tropical cyclone intensity: Scale-dependent forecast error growth in high-resolution stochastic kinetic-energy backscatter ensembles. Quart. J. Roy. Meteor. Soc., 142, 43−57, https://doi.org/10.1002/qj.2626.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. Climatol., 43, 170−181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784−2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.
Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 1427−1445, https://doi.org/10.1175/MWR-D-11-00217.1.
Kunii, M., and T. Miyoshi, 2012: Including uncertainties of sea surface temperature in an ensemble Kalman filter: A case study of Typhoon Sinlaku (2008). Wea. Forecasting, 27, 1586−1597, https://doi.org/10.1175/WAF-D-11-00136.1.
Leutbecher, M., and Coauthors, 2017: Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quart. J. Roy. Meteor. Soc., 143, 2315−2339, https://doi.org/10.1002/qj.3094.
Li, C.-H., J. Berner, J.-S. Hong, C.-T. Fong, and Y.-H. Kuo, 2020: The Taiwan WRF Ensemble prediction system: Scientific description, model-error representation and performance results. Asia-Pacific Journal of Atmospheric Sciences, 56, 1−15, https://doi.org/10.1007/s13143-019-00127-8.
Lu, X. Q., H. Yu, M. Ying, B. K. Zhao, S. Zhang, L. M. Lin, L. N. Bai, and R. J. Wan, 2021: Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci., 38(4), 690−699, https://doi.org/10.1007/s00376-020-0211-7.
Magnusson, L. and Coauthors, 2019: ECMWF activities for improved hurricane forecasts. Bull. Amer. Meteor. Soc., 100, 445−458, https://doi.org/10.1175/BAMS-D-18-0044.1.
Mason, S. J., and N. E. Graham, 2002: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quart. J. Roy. Meteor. Soc., 128, 2145−2166, https://doi.org/10.1256/003590002320603584.
McCabe, A., R. Swinbank, W. Tennant, and A. Lock, 2016: Representing model uncertainty in the Met Office convection-permitting ensemble prediction system and its impact on fog forecasting. Quart. J. Roy. Meteor. Soc., 142, 2897−2910, https://doi.org/10.1002/qj.2876.
Melhauser, C., F. Q. Zhang, Y. H. Weng, Y. Jin, H. Jin, and Q. Y. Zhao, 2017: A multiple-model convection-permitting ensemble examination of the probabilistic prediction of tropical cyclones: Hurricanes sandy (2012) and Edouard (2014). Wea. Forecasting, 32, 665−688, https://doi.org/10.1175/WAF-D-16-0082.1.
Montmerle, T., Y. Michel, E. Arbogast, B. Ménétrier, and P. Brousseau, 2018: A 3D ensemble variational data assimilation scheme for the limited-area AROME model: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 144, 2196−2215, https://doi.org/10.1002/qj.3334.
Ollinaho, P., and Coauthors, 2017: Towards process-level representation of model uncertainties: Stochastically perturbed parametrizations in the ECMWF ensemble. Quart. J. Roy. Meteor. Soc., 143, 408−422, https://doi.org/10.1002/qj.2931.
Palmer, T., 2019: The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years. Quart. J. Roy. Meteor. Soc., 145, 12−24, https://doi.org/10.1002/qj.3383.
Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Technical Memoranda 598, 42 pp.
Pan, H.-L., and W.-S. Wu, 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Off. Note 409, 43 pp.
Qin, X. H., W. S. Duan, and H. Xu, 2020: Sensitivity to tendency perturbations of tropical cyclone short-range intensity forecasts generated by WRF. Adv. Atmos. Sci., 37(3), 291−306, https://doi.org/10.1007/s00376-019-9187-6.
Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395−419, https://doi.org/10.1175/2008WAF2222128.1.
Rappaport, E. N., J.-G. Jiing, C. W. Landsea, S. T. Murillo, and J. L. Franklin, 2012: The Joint Hurricane Test Bed: Its first decade of tropical cyclone research-to-operations activities reviewed. Bull. Amer. Meteor. Soc., 93, 371−380, https://doi.org/10.1175/BAMS-D-11-00037.1.
Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78−97, https://doi.org/10.1175/2007MWR2123.1.
Rogers, R., and Coauthors, 2013: NOAA'S hurricane intensity forecasting experiment: A progress report. Bull. Amer. Meteor. Soc., 94, 859−882, https://doi.org/10.1175/BAMS-D-12-00089.1.
Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536−562, https://doi.org/10.1175/MWR-D-14-00175.1.
Romine, G. S., C. S. Schwartz, J. Berner, K. R. Smith, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 4519−4541, https://doi.org/10.1175/MWR-D-14-00100.1.
Sanchez, C., K. D. Williams, and M. Collins, 2016: Improved stochastic physics schemes for global weather and climate models. Quart. J. Roy. Meteor. Soc., 142, 147−159, https://doi.org/10.1002/qj.2640.
Stensrud, D. J., J. W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 2077−2107, https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.
Tang, X. B., F. Ping, S. Yang, M. X. Li, and J. Peng, 2018: Relationship between convective bursts and the rapid intensification of Typhoon Mujigae (2015). Atmos. Sci. Lett., 19, e811, https://doi.org/10.1002/asl.811.
Tompkins, A. M., and J. Berner, 2008: A stochastic convective approach to account for model uncertainty due to unresolved humidity variability. J. Geophys. Res., 113, D18101, https://doi.org/10.1029/2007JD009284.
Torn, R. D., 2010: Performance of a mesoscale ensemble kalman filter (EnKF) during the NOAA high-resolution hurricane test. Mon. Wea. Rev., 134, 4375−4392, https://doi.org/10.1175/2010MWR3361.1.
Torn, R. D., 2016: Evaluation of atmosphere and ocean initial condition uncertainty and stochastic exchange coefficients on ensemble tropical cyclone intensity forecasts. Mon. Wea. Rev., 144, 3487−3506, https://doi.org/10.1175/MWR-D-16-0108.1.
Wastl, C., Y. Wang, A. Atencia, and C. Wittmann, 2019a: Independent perturbations for physics parametrization tendencies in a convection-permitting ensemble (pSPPT). Geosci. Model Dev., 12, 261−273, https://doi.org/10.5194/gmd-12-261-2019.
Wastl, C., Y. Wang, A. Atencia, and C. Wittmann, 2019b: A Hybrid Stochastically Perturbed Parametrization Scheme in a Convection-Permitting Ensemble. Mon. Wea. Rev., 147, 2217−2230, https://doi.org/10.1175/MWR-D-18-0415.1.
Wang, H., and Y. Q. Wang, 2014: A numerical study of typhoon megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29−48, https://doi.org/10.1175/MWR-D-13-00070.1.
Wang, L., X. S. Shen, J. J. Liu, and B. Wang, 2020: Model uncertainty representation for a convection-allowing ensemble prediction system based on CNOP-P. Adv. Atmos. Sci., 37(8), 817−831, https://doi.org/10.1007/s00376-020-9.
Wang, S. Z., S. X. Qiao, J. Z. Min, and X. R. Zhuang, 2019: The impact of stochastically perturbed parameterizations on tornadic supercell cases in East China. Mon. Wea. Rev., 147, 199−220, https://doi.org/10.1175/MWR-D-18-0182.1.
Xu, X. L., D. W. Sun, and T. J. Guo, 2015: A systemic analysis of typhoon risk across China. Natural Hazards, 77, 461−478, https://doi.org/10.1007/s11069-015-1586-0.
Xu, Z. Z., J. Chen, Z. Jin, H. Q. Li, and F. J. Chen, 2020: Assessment of the forecast skill of multiphysics and multistochastic methods within the GRAPES regional ensemble prediction system in the east Asian monsoon region. Wea. Forecasting, 35, 1145−1171, https://doi.org/10.1175/WAF-D-19-0021.1.
Xue, J. S., S. Y. Zhuang, G. F. Zhu, H. Zhang, Z. Q. Liu, Y. Liu, and Z. R. Zhuang, 2008: Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chinese Science Bulletin, 53, 3446−3457, https://doi.org/10.1007/s11434-008-0416-0.
Yamaguchi, M., R. Sakai, M. Kyoda, T. Komori, and T. Kadowaki, 2009: Typhoon ensemble prediction system developed at the Japan Meteorological Agency. Mon. Wea. Rev., 137, 2592−2604, https://doi.org/10.1175/2009MWR2697.1.
Yao, J. W., W. S. Duan, and X. H. Qin, 2021: Which features of the SST forcing error most likely disturb the simulated intensity of tropical cyclones. Adv. Atmos. Sci., 38(4), 581−602, https://doi.org/10.1007/s00376-020-0073-z.
Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287−301, https://doi.org/10.1175/JTECH-D-12-00119.1.
Yu, H., P. Y. Chen, Q. Q. Li, and B. Tang, 2013: Current capability of operational numerical models in predicting tropical cyclone intensity in the western North Pacific. Wea. Forecasting, 28, 353−367, https://doi.org/10.1175/WAF-D-11-00100.1.
Zhang, F. Q., and D. D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975−983, https://doi.org/10.1175/JAS-D-12-0133.1.
Zhang, G. J., and X. Q. Wu, 2003: Convective momentum transport and perturbation pressure field from a cloud-resolving model simulation. J. Atmos. Sci., 60, 1120−1139, https://doi.org/10.1175/1520-0469(2003)060<1120:CMTAPP>2.0.CO;2.
Zhang, M., J. Z. Min, Y. C. Qi, and Y. Yang, 2014a: Ensemble experiments research based on mass-fluxed cumulus convective parameterization of KF-ETA. Plateau Meteorology, 33, 1323−1331, https://doi.org/10.7522/j.issn.1000-0534.2013.00086. (in Chinese)
Zhang, Q., L. G. Wu, and Q. F. Liu, 2009: Tropical cyclone damages in China 1983−2006. Bull. Amer. Meteor. Soc., 90, 489−496, https://doi.org/10.1175/2008BAMS2631.1.
Zhang, X. B., 2018a: A GRAPES-based mesoscale ensemble prediction system for tropical cyclone forecasting: Configuration and performance. Quart. J. Roy. Meteor. Soc., 144, 478−498, https://doi.org/10.1002/qj.3220.
Zhang, X. B., 2018b: Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over Southern China: Preliminary results during SCMREX. Quart. J. Roy. Meteor. Soc., 144, 2842−2862, https://doi.org/10.1002/qj.3411.
Zhang, Y. J., Z. Y. Meng, F. Q. Zhang, and Y. H. Weng, 2014b: Predictability of tropical cyclone intensity evaluated through 5-yr forecasts with a convection-permitting regional-scale model in the Atlantic basin. Wea. Forecasting, 29, 1003−1023, https://doi.org/10.1175/WAF-D-13-00085.1.
Zhang, Z., V. Tallapragada, C. Kieu, S. Trahan, and W. G. Wang, 2014c: HWRF based ensemble prediction system using perturbations from GEFS and stochastic convective trigger function. Tropical Cyclone Research and Review, 3, 145−161, https://doi.org/10.6057/2014TCRR03.02.