Bannister, R. N., H. G. Chipilski, and O. Martinez-Alvarado, 2020: Techniques and challenges in the assimilation of atmospheric water observations for numerical weather prediction towards convective scales. Quart. J. Roy. Meteor. Soc., 146(726), 1−48,
Bauer, P., A. J. Geer, P. Lopez, and D. Salmond, 2010: Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Quart. J. Roy. Meteor. Soc., 136, 1868−1885,
Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47−55,
Bauer, P., P. Lopez, A. Benedetti, D. Salmond, and E. Moreau, 2006: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. I: 1D-Var. Quart. J. Roy. Meteor. Soc., 132(620), 2277−2306,
Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9−Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151−183,
Bormann, N., M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and A. McNally, 2016: Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Quart. J. Roy. Meteor. Soc., 142, 1767−1780,
Chahine, M. T., 1977: Remote sounding of cloudy atmospheres. II. Multiple cloud formations. J. Atmos. Sci., 34(5), 744−757,<0744:RSOCAI>2.0.CO;2.
Cintineo, R. M., J. A. Otkin, T. A. Jones, S. Koch, and D. J. Stensrud, 2016: Assimilation of synthetic GOES-R ABI infrared brightness temperatures and WSR-88D radar observations in a high-resolution OSSE. Mon. Wea. Rev., 144, 3159−3180,
Duruisseau, F., P. Chambon, E. Wattrelot, M. Barreyat, and J.-F. Mahfouf, 2019: Assimilating cloudy and rainy microwave observations from SAPHIR on board Megha Tropiques within the ARPEGE global model. Quart. J. Roy. Meteor. Soc., 145(719), 620−641,
Errico, R. M., P. Bauer, and J.-F. Mahfouf, 2007: Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci., 64, 3785−3798,
Eyre, J. R., S. J. English, and M. Forsythe, 2020: Assimilation of satellite data in numerical weather prediction. Part I: The early years. Quart. J. Roy. Meteor. Soc., 146(726), 49−68,
Geer, A. J., 2019: Correlated observation error models for assimilating all-sky infrared radiances. Atmospheric Measurement Techniques, 12, 3629−3657,
Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data assimilation. Quart. J. Roy. Meteor. Soc., 137(661), 2024−2037,
Geer, A. J., and Coauthors, 2017: The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quart. J. Roy. Meteor. Soc., 143(709), 3189−3206,
Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 1191−1217,
Geer, A. J., S. Migliorini, and M. Matricardi, 2019: All-sky assimilation of infrared radiances sensitive to mid-and upper-tropospheric moisture and cloud. Atmospheric Measurement Techniques, 12, 4903−4929,
Goldberg, M. D., T. S. King, W. W. Wolf, C. Barnet, H. Gu, and L. H. Zhou, 2005: Using MODIS with AIRS to develop an operational cloud-cleared radiance product. Proc. SPIE 5655, Multispectral and Hyperspectral Remote Sensing Instruments and Applications II, Honolulu, Hawai'i, United States, SPIE,
Gustafsson, N., and Coauthors, 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Quart. J. Roy. Meteor. Soc., 144, 1218−1256,
Harnisch, F., M. Weissmann, and Á. Periáñez, 2016: Error model for the assimilation of cloud-affected infrared satellite observations in an ensemble data assimilation system. Quart. J. Roy. Meteor. Soc., 142, 1797−1808,
Hilton, F., N. C. Atkinson, S. J. English, and J. R. Eyre, 2009: Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments. Quart. J. Roy. Meteor. Soc., 135, 495−505,
Honda, T., and Coauthors, 2018: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213−229,
Huang, H.-L., and W. L. Smith, 2004: Apperception of clouds in AIRS data. Proc. ECMWF Workshop on Assimilation of High Spectral Resolution Sounder in NWP, 155−169. Available from
Joiner, J., and L. Rokke, 2000: Variational cloud-clearing with TOVS data. Quart. J. Roy. Meteor. Soc., 126(563), 725−748,
Jones, T. A., and D. J. Stensrud, 2015: Assimilating cloud water path as a function of model cloud microphysics in an idealized simulation. Mon. Wea. Rev., 143, 2502−2081,
Jones, T. A., D. J. Stensrud, P. Minnis, and R. Palikonda, 2013a: Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon. Wea. Rev., 141, 2272−2289,
Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2013b: Assimilation of satellite infrared radiances and Doppler radar observations during a cool season observing system simulation experiment. Mon. Wea. Rev., 141, 3273−3299,
Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2014: Forecast evaluation of an observing system simulation experiment assimilating both radar and satellite data. Mon. Wea. Rev., 142, 107−124,
Jung, J. A., A. Collard, K. Bathmann, D. Groff, A. Heidinger, and M. Goldberg, 2017: Preparing for CrIS full spectral resolution radiances in the NCEP global forecast system. Proc. 21st Int. TOVS Study Conf., Darmstadt, Germany.
Kazumori, M., 2016: Assimilation of Himawari-8 clear-sky radiance data in JMA’s NWP systems. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 46, 01.15−01.16.
Kelly, G., and J.-N. Thepaut, 2007: Evaluation of the impact of the space component of the global observation system through observing system experiments. ECMWF Newsletter, No. 113.
Kim, M.-J., J. J. Jin, A. E. Akkraoui, W. McCarty, R. Todling, W. Gu, and R. Gelaro, 2020: The framework for assimilating all-sky GPM microwave imager brightness temperature data in the NASA GEOS data assimilation system. Mon. Wea. Rev., 148, 2433−2455,
Kurzrock, F., S. Cros, F. C. Ming, J. A. Otkin, A. Hutt, L. Linguet, G. Lajoie, and R. Potthast, 2018: A review of the use of geostationary satellite observations in regional-scale models for short-term cloud forecasting. Meteor. Z., 27, 277−298,
Le Marshall, J., J. Jung, J. Derber, and R. Treadon, 2005: Airs hyperspectral data improves southern hemisphere forecasts. Aust. Meteor. Mag., 54, 57−60.
Le Marshall, J., and Coauthors, 2006: Improving global analysis and forecasting with AIRS. Bull. Amer. Meteor. Soc., 87(7), 891−895,
Li, J., and H.-L. Huang, 1999: Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle. Appl. Opt., 38, 916−923,
Li, J., W. P. Menzel, F. Y. Sun, T. J. Schmit, and J. Gurka, 2004: AIRS subpixel cloud characterization using MODIS cloud products. J. Appl. Meteorol., 43, 1083−1094,<1083:ASCCUM>2.0.CO;2.
Li, J., C.-Y. Liu, H.-L. Huang, T. J. Schmit, X. B. Wu, W. P. Menzel, and J. J. Gurka, 2005: Optimal cloud-clearing for AIRS radiances using MODIS. IEEE Trans. Geosci. Remote Sens., 43, 1266−1278,
Li, J., P. Wang, H. Han, J. L. Li, and J. Zheng, 2016: On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models. Journal of Meteorological Research, 30, 169−182,
Li, Z. L., and Coauthors, 2019: The alternative of CubeSat-based advanced infrared and microwave sounders for high impact weather forecasting. Atmos. Ocean. Sci. Lett., 12(2), 80−90,
Liu, H. X., A. Collard, and J. Derber, 2017: Comparison among three CrIS cloud-clearing radiance (CCR) products & all-sky SEVIRI radiance assimilation at NCEP. ITSC 21. [Available online from]
Liu, H. X., A. Collard, J. Derber, S. Nebuda, and J. Jung, 2019: Evaluation of GOES-16 clear-sky radiance data and preliminary assimilation results at NCEP. [Available online from]
Lupu, C., and A. McNally, 2012: Assimilation of cloud-affected radiances from Meteosat-9 at ECMWF. EUMETSAT/ECMWF Fellowship Programme Research Rep. No. 25, 33 pp.
Ma, Z. Z., E. S. Maddy, B. L. Zhang, T. Zhu, and S. A. Boukabara, 2017: Impact assessment of Himawari-8 AHI data assimilation in NCEP GDAS/GFS with GSI. J. Atmos. Oceanic Technol., 34(4), 797−815,
Matricardi, M., 2005: The inclusion of aerosols and clouds in RTIASI, the ECMWF fast radiative transfer model for the infrared atmospheric sounding interferometer. ECMWF Tech. Memorandum No. 474, 53 pp.
McNally, A. P., 2002: A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders. Quart. J. Roy. Meteor. Soc., 128, 2551−2556,
McNally, A. P., 2009: The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 135, 1214−1229,
McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935−957,
Meng, D. M., and Coauthors, 2021a: New observation operators for cloud liquid/ice water path from ABI and their impact on assimilation and hurricane forecasts. J. Geophys. Res., 126, e2020JD034164,
Meng, D. M., Y. D. Chen, J. Li, H. L. Wang, Y. B. Wang, and T. Sun, 2021b. Cloud-dependent piecewise assimilation based on a hydrometeor-included background error covariance and its impact on regional Numerical Weather Prediction. Mon. Wea. Rev., in press,
Menzel, W. P., T. J. Schmit, P. Zhang, and J. Li, 2018: Satellite-based atmospheric infrared sounder development and applications. Bull. Amer. Meteor. Soc., 99, 583−603,
Michel, Y., T. Auligné, and T. Montmerle, 2011: Heterogeneous convective-scale background error covariances with the inclusion of hydrometeor variables. Mon. Wea. Rev., 139(9), 2994−3015,
Migliorini, S., 2012: On the equivalence between radiance and retrieval assimilation. Mon. Wea. Rev., 140(1), 258−265,
Min, M., J. Li, F. Wang, Z. J. Liu, and W. P. Menzel, 2020: Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sens. Environ., 239, 111616,
Minamide, M., and F. Q. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Wea. Rev., 145, 1063−1081,
Minamide, M., and F. Q. Zhang, 2018: Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction. Mon. Wea. Rev., 146, 3241−3258,
Nebuda, S., J. Jung, A. Heidinger, and A. Collard, 2018: Application of the GOES-R series cloud mask to generate clear sky and all sky radiance products for data assimilation. CGMS International Cloud Working Group, Madison, WI, 24 pp.
Okamoto, K., 2013: Assimilation of overcast cloudy infrared radiances of the geostationary MTSAT-1R imager. Quart. J. Roy. Meteor. Soc., 139, 715−730,
Okamoto, K., 2017: Evaluation of IR radiance simulation for all-sky assimilation of Himawari-8/AHI in a mesoscale NWP system. Quart. J. Roy. Meteor. Soc., 143, 1517−1527,
Okamoto, K., A. P. McNally, and W. Bell, 2014: Progress towards the assimilation of all-sky infrared radiances: An evaluation of cloud effects. Quart. J. Roy. Meteor. Soc., 140, 1603−1614,
Okamoto, K., Y. Sawada, and M. Kunii, 2019: Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. Quart. J. Roy. Meteor. Soc., 145, 745−766,
Otkin, J. A., 2010: Clear and cloudy sky infrared brightness temperature assimilation using an ensemble Kalman filter. J. Geophys. Res., 115, D19207,
Otkin, J. A., 2012a: Assessing the impact of the covariance localization radius when assimilating infrared brightness temperature observations using an ensemble Kalman filter. Mon. Wea. Rev., 140, 543−561,
Otkin, J. A., 2012b: Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event. J. Geophys. Res., 117, D19203,
Otkin, J. A., and R. Potthast, 2019: Assimilation of all-sky SEVIRI infrared brightness temperatures in a regional-scale ensemble data assimilation system. Mon. Wea. Rev., 147, 4481−4509,
Otkin, J. A., D. J. Posselt, E. R. Olson, H.-L. Huang, J. E. Davies, J. Li, and C. S. Velden, 2007: Mesoscale numerical weather prediction models used in support of infrared hyperspectral measurement simulation and product algorithm development. J. Atmos. Oceanic Technol., 24, 585−601,
Otkin, J. A., R. Potthast, and A. S. Lawless, 2018: Nonlinear bias correction for satellite data assimilation using Taylor series polynomials. Mon. Wea. Rev., 146, 263−285,
Pangaud T, N. Fourrie, V. Guidard, M. Dahoui, and F. Rabier, 2009: Assimilation of AIRS radiances affected by mid-to low-level clouds. Mon. Wea. Rev., 137, 4276−4292,
Pavelin, E. G., and S. J. English, and J. R. Eyre, 2008: The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 134, 737−749,
Potthast, R., A. Walter, and A. Rhodin, 2019: A localized adaptive particle filter within an operational NWP framework. Mon. Wea. Rev., 147, 345−362,
Prates, C., S. Migliorini, S. English, and E. Pavelin, 2014: Assimilation of satellite infrared sounding measurements in the presence of heterogeneous cloud fields. Quart. J. Roy. Meteor. Soc., 140(683), 2062−2077,
Reale, O., E. L. McGrath-Spangler, W. McCarty, D. Holdaway, and R. Gelaro, 2018: Impact of adaptively thinned AIRS cloud-cleared radiances on tropical cyclone representation in a global data assimilation and forecast system. Wea. Forecasting, 33, 909−931,
Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geoscientific Model Development, 11, 2717−2737,
Sawada, Y., K. Okamoto, M. Kunii, and T. Miyoshi, 2019: Assimilating every-10-minute Himawari-8 infrared radiances to improve convective predictability. J. Geophys. Res., 124, 2546−2561,
Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 1079−1096,
Sieron, S. B., F. Q. Zhang, E. E. Clothiaux, L. N. Zhang, and Y. H. Lu, 2018: Representing precipitation ice species with both spherical and nonspherical particles for radiative transfer modeling of microphysics-consistent cloud microwave scattering properties. Journal of Advances in Modeling Earth Systems, 10, 1011−1028,
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 240, 3090−3105,
Stephens, G. L., and Coauthors, 2012: An update on Earth’s energy balance in light of the latest global observations. Nature Geoscience, 5, 691−696,
Thompson, G., M. Tewari, K. Ikeda, S. Tessendorf, C. Weeks, J. Otkin, and F. Y. Kong, 2016: Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts. Atmospheric Research, 168, 92−104,
Vidot, J., A. J. Baran, and P. Brunel, 2015: A new ice cloud parameterization for infrared radiative transfer simulation of cloudy radiances: Evaluation and optimization with IIR observations and ice cloud profile retrieval products. J. Geophys. Res., 120(14), 6937−6951,
Wang, P., and Coauthors, 2015: Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP. J. Geophys. Res., 120, 5469−5484,
Wang, P., J. Li, Z. L. Li, A. H. N. Lim, J. L. Li, T. J. Schmit, and M. D. Goldberg, 2017: The impact of cross-track infrared sounder (CrIS) cloud-cleared radiances on hurricane Joaquin (2015) and Matthew (2016) forecasts. J. Geophys. Res., 122, 13201−13218,
Wang, P., J. Li, Z. L. Li, A. H. N. Lim, J. L. Li, and M. D. Goldberg, 2019: Impacts of observation errors on hurricane forecasts when assimilating hyperspectral infrared sounder radiances in partially cloudy skies. J. Geophys. Res., 124, 10802−10813,
Wu, T.-C., M. Zupanski, L. D. Grasso, C. D. Kummerow, and S.-A. Boukabara, 2019: All-sky radiance assimilation of ATMS in HWRF: A demonstration study. Mon. Wea. Rev., 147, 85−106,
Wu, Y. L., Z. Q. Liu, and D. Q. Li, 2020: Improving forecasts of a record-breaking rainstorm in Guangzhou by assimilating every 10-min AHI radiances with WRF 4DVAR. Atmospheric Research, 239, 104912,
Yang, C., Z. Q. Liu, J. Bresch, S. R. H. Rizvi, X.-Y. Huang, and J. Z. Min, 2016: AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A: Dynamic Meteorology and Oceanography, 68, 30917,
Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98(8), 1637−1658,
Yin, R. Y., W. Han, Z. Q. Gao, and D. Di, 2020: The evaluation of FY4A’s Geostationary Interferometric Infrared Sounder (GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var. Quart. J. Roy. Meteor. Soc., 146, 1459−1476,
Zhang, F. Q., M. Minamide, and E. E. Clothiaux, 2016: Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett., 43, 2954−2963,
Zhang, F. Q., M. Minamide, R. G. Nystrom, X. C. Chen, S.-J. Lin, and L. M. Harris, 2019a: Improving Harvey forecasts with next-generation weather satellites: Advanced hurricane analysis and prediction with assimilation of GOES-R all-sky radiances. Bull. Amer. Meteor. Soc., 100, 1217−1222,
Zhang, M., M. Zupanski, M.-J. Kim, and J. A. Knaff, 2013: Assimilating AMSU-A radiances in the TC core area with NOAA operational HWRF (2011) and a hybrid data assimilation system: Danielle (2010). Mon. Wea. Rev., 141, 3889−3907,
Zhang, Q., Y. Yu, W. M. Zhang, T. L. Luo, and X. Wang, 2019b: Cloud detection from FY-4A’s geostationary interferometric infrared sounder using machine learning approaches. Remote Sensing, 11(24), 3035,
Zhang, Y. J., F. Q. Zhang, and D. J. Stensrud, 2018: Assimilating all-sky infrared radiances from GOES-16 ABI using an ensemble Kalman filter for convection-allowing severe thunderstorms prediction. Mon. Wea. Rev., 146, 3363−3381,
Zhou, L. H., M. Divakarla, X. P. Liu, A. Layns, and M. Goldberg, 2019: An overview of the science performances and calibration/validation of joint polar satellite system operational products. Remote Sensing, 11(6), 698,
Zhu, Y. Q., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction's Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140(682), 1479−1492,
Zupanski, D., M. Zupanski, L. D. Grasso, R. Brummer, I. Jankov, D. Lindsey, M. Sengupta, and M. Demaria, 2011: Assimilating synthetic GOES-R radiances in cloudy conditions using an ensemble-based method. Int. J. Remote Sens., 32, 9637−9659,