Austin R., 2007: Level 2B radar-only cloud water content (2B-CWC-RO) process description document. Version: 5.1, CloudSat Project Report, A NASA Earth System Science Pathfinder Mission, 1- 24.
[ Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CWC-RO_PDICD.P_R04.20071021.pdf.]
Austin R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114(D8),D00A23, doi: 10.1029/2008JD010049.
Barker H. W., A. V. Korolev, D. R. Hudak, J. W. Strapp, K. B. Strawbridge, and M. Wolde, 2008: A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project. J. Geophys. Res., 113(D8),D00A16, doi: 10.1029/ 2008JD009971.
Bouniol D., A. Protat, A. Plana-Fattori M. Giraud, J.-P. Vinson, and N. Grand, 2008: Comparison of airborne and spaceborne 95-GHz radar reflectivities and evaluation of multiple scattering effects in spaceborne measurements. J. Atmos. Oceanic Technol., 25( 11), 1983- 1995.
Carey L. D., J. G. Niu, P. Yang, J. A. Kankiewicz, V. E. Larson, and T. H. V. Haar, 2008: The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. J. Appl. Meteor. Climatol., 47( 10), 2487- 2495.
Crosier J., Coauthors, 2011: Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus. Atmos. Chem. Phys., 11, 257-273.
Delano\"e, J., A. Protat, O. Jourdan, J. Pelon, M. Papazzoni, R. Dupuy, J.-F. Gayet, C. Jouan, 2013: Comparison of airborne in situ, airborne radar-lidar, and spaceborne radar-lidar retrievals of polar ice cloud properties sampled during the polarcat campaign. J.Atmos. Oceanic Technol., 30( 2), 57- 73.
Deng M., G. G. Mace, Z. E. Wang, and R. P. Lawson, 2013: Evaluation of several a-train ice cloud retrieval products with in situ measurements collected during the SPARTICUS campaign. J. Appl. Meteor. Climatol., 52( 5), 1014- 1030.
Devasthale A., M. A. Thomas, 2012: Sensitivity of cloud liquid water content estimates to the temperature-dependent thermodynamic phase: A global study using CloudSat data. J.Climate, 25( 20), 7297- 7307.
Fleishauer R. P., V. E. Larson, and T. H. V. Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59( 11), 1779- 1804.
Gao W. H., C.-H. Sui, and Z. J. Hu, 2014: A study of macrophysical and microphysical properties of warm clouds over the Northern Hemisphere using CloudSat/CALIPSO data. J. Geophys. Res., 119( 7), 3268- 3280.
Hallett J., S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26- 28.
Heymsfield A., D. Winker, M. Avery, M. Vaughan, G. Diskin, M. Deng, V. Mitev, and R. Matthey, 2014: Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0° to-86°: Implications for spaceborne lidar retrievals. J. Appl. Meteor. Climatol.,53(3), 479-505.
Hobbs P. V., A. L. Rangno, M. Shupe, and T. Uttal, 2001: Airborne studies of cloud structures over the Arctic Ocean and comparisons with retrievals from ship-based remote sensing measurements. J. Geophys. Res., 106( D14), 15 029- 15 044.
Hogan R. J., P. R. Field, A. J. Illingworth, R. J. Cotton, and T. W. Choularton, 2002: Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quart. J. Roy. Meteor. Soc., 128( 580), 451- 476.
Hogan R. J., M. D. Behera, E. J. O'Connor, and A. J. Illingworth, 2004: Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar. Geophys. Res. Lett., 31(6),L05106, doi: 10.1029/2003GL018977.
Hu Y. X., S. Rodier, K. M. Xu, W. B. Sun, J. P. Huang, B. Lin, P. W. Zhai, and D. Josset, 2010: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res., 115 (D4),D00H34, doi: 10.1029/2009JD012384.
Korolev A. V., G. A. Isaac, S. G. Cober, J. W. Strapp, and J. Hallett, 2003: Microphysical characterization of mixed-phase clouds. Quart. J. Royal Meteor. Soc., 129( 587), 39- 65.
Mace G. G., R. Marchand , Q. Q. Zhang, and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34(10),L09808, doi: 10.1029/2006GL029017.
Mazin I. P., 1995: Cloud water content in continental clouds of middle latitudes. Atmospheric Research, 35( 2-4), 283- 297.
McFarquhar G. M., A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds. J. Atmos. Sci., 55( 11), 2039- 2052.
McFarquhar G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112,D24201, doi: 10.1029/2007JD008633.
Molthan A. L., W. A. Petersen, 2011: Incorporating ice crystal scattering databases in the simulation of millimeter-wavelength radar reflectivity. J. Atmos. Oceanic Technol., 28( 4), 337- 351.
Nasiri S. L., B. H. Kahn, 2008: Limitations of bispectral infrared cloud phase determination and potential for improvement. J. Appl. Meteor. Climatol., 47( 11), 2895- 2910.
Protat A., Coauthors, 2009: Assessment of CloudSat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26( 10), 1717- 1741.
Protat A., J. Delano\"e, E. J. O'Connor, and T. S. L'Ecuyer, 2010: The evaluation of CloudSat and CALIPSO ice microphysical products using ground-based cloud radar and lidar observations. J. Atmos. Oceanic Technol., 27( 6), 793- 810.
Stein T. H. M., J. Delano\"e, and R. J. Hogan, 2011: A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS. J. Appl. Meteor. Climatol., 50( 10), 1952- 1969.
Stephens G.L., Coauthors, 2002: The CloudSat mission and the a-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83( 12), 1771- 1790.
Tsushima Y., Coauthors, 2006: Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: A multi-model study. Climate Dyn., 27( 2-3), 113- 126.
Wang L., C. C. Li, Z. G. Yao, Z. L. Zhao, Z. G. Han, and Q. Wei, 2014: Application of aircraft observations over Beijing in cloud microphysical property retrievals from CloudSat. Adv. Atmos. Sci.,31(5), 926-937, doi: 10.1007/s00376-013-3156-2.
Wood N., 2008: Level 2B radar-visible optical depth cloud water content (2B-CWC-RVOD) process description document. Version 5.1, CloudSat Project Report, A NASA Earth System Science Pathfinder Mission, 1- 26.
[ Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CWC-RVOD_PDICD.P_R04.20081023.pdf.]
Yin J. F., D. H. Wang, and G. Q. Zhai, 2011: Long-term in situ measurements of the cloud-precipitation microphysical properties over East Asia. Atmospheric Research, 102( 1-2), 206- 217.
You L. G., Y. G. Liu, 1995: Some microphysical characteristics of cloud and precipitation over China. Atmospheric Research, 35( 2-4), 271- 281.
Zhang D. G., X. L. Guo, D. L. Gong, and Z. Y. Yao, 2011: The observational results of the clouds microphysical structure based on the data obtained by 23 sorties between 1989 and 2008 in Shandong Province. Acta Meteorologica Sinica, 69, 195- 207. (in Chinese)
Zhang D. M., Z. E. Wang, and D. Liu, 2010: A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements. J. Geophys. Res., 115 (D4),D00H13, doi: 10.1029/2009JD 012143.