Albers S. C.,J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273-287,<0273:tlaaps>;2.
Atkins N. T.,J. M. Arnott, R. W. Przybylinski, R. A. Wolf, and B. D. Ketcham, 2004: Vortex structure and evolution within bow echoes. Part I: Single-doppler and damage analysis of the 29 June 1998 Derecho. Mon. Wea. Rev., 132, 2224-2242,<2224:vsaewb>;2.
Biggerstaff M. I.,R. A. Houze, 1993: Kinematics and microphysics of the transition zone of the 10-11 June 1985 squall line. J. Atmos. Sci., 50, 3091-3110,<3091:kamott>;2.
Carlin J. T.,J. D. Gao, J. C. Snyder, and A. V. Ryzhkov, 2017: Assimilation of Z DR columns for improving the spinup and forecast of convective storms in storm-scale models: Proof-of-concept experiments. Mon. Wea. Rev., 145, 5033-5057,
Chang S.-F.,Y.-C. Liou, J. Z. Sun, and S.-L. Tai, 2016: The implementation of the ice-phase microphysical process into a four-dimensional variational Doppler radar analysis system (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting. J. Atmos. Sci., 73, 1015-1038,
Chang W.-Y.,T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the Western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973-1993,
Chang W.-Y.,W.-C. Lee, and Y.-C. Liou, 2015: The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/ TiMREX. Mon. Wea. Rev., 143, 317-340,
Chen M.,X.-Y. Huang, 2006: Digital filter initialization for MM5. Mon. Wea. Rev., 134, 1222-1236.
Dong J. L.,M. Xue, 2013: Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using an ensemble Kalman filter for the analysis and forecast of landfalling hurricane Ike (2008). Quart. J. Roy. Meteor. Soc., 139, 467-487,
Dong J. L.,M. Xue, and K. Droegemeier, 2011: The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms with an ensemble Kalman filter. Meteor. Atmos. Phys., 112, 41-61,
Fovell R.,D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 1427-1442.<1427:nsocgs>;2.
Gao J. D.,M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from Two Doppler radars. Mon. Wea. Rev., 127, 2128-2142,<2128:avmfta>;2.
Gao J. D.,M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457-469,<0457:atvdam>;2.
Gao J. D.,C. H. Fu, D. J. Stensrud, and J. S. Kain, 2016: OSSEs for an ensemble 3DVAR data assimilation system with radar observations of convective storms. J. Atmos. Sci., 73, 2403-2426,
Ge G. Q.,J. D. Gao, and M. Xue, 2012: Diagnostic pressure equation as a weak constraint in a storm-scale three-dimensional variational radar data assimilation system. J. Atmos. Oceanic Technol., 29, 1075-1092,
Grim J. A.,R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. P. Jorgensen, 2009: Development and forcing of the rear inflow jet in a rapidly developing and decaying squall line during BAMEX. Mon. Wea. Rev., 137, 1206-1229,
Hu M.,M. Xue, 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135, 507-525,
Hu M.,M. Xue, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675-698,
Hu M.,M. Xue, J. D. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699-721,
Johnson A.,X. G. Wang, 2017: Design and implementation of a GSI-based convection-allowing ensemble data assimilation and forecast system for the PECAN field experiment. Part I: Optimal configurations for nocturnal convection prediction using retrospective cases. Wea. Forecasting, 32, 289-315.
Jung Y.,G. F. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman Filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228-2245.
Jung Y.,M. Xue, G. F. Zhang, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 2246-2260.
Jung Y.,M. Xue, and M. J. Tong, 2012: Ensemble Kalman filter analyses of the 29-30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 1457-1475.
Kessler E.,1995: On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res., 38, 109-145,
Lin Y.-L.,R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092,<1065:bpotsf>;2.
Lynch P.,X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 1019-1034,<1019:iothmu>;2.
Meng Z. Y.,F. Q. Zhang, P. Markowski, D. C. Wu, and K. Zhao, 2012: A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China. J. Atmos. Sci., 69, 1182-1207,
Milbrand t, J. A.,M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051-3064,
Pan Y. J.,M. Xue, and G. Q. Ge, 2016: Incorporating diagnosed intercept parameters and the graupel category within the ARPS cloud analysis system for the initialization of double-moment microphysics: Testing with a squall line over South China. Mon. Wea. Rev., 144, 371-392,
Rogers R. R.,M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed., Pergamon Press., 293 pp.
Schenkman A. D.,M. Xue, A. Shapiro, K. Brewster, and J. D. Gao, 2011a: The analysis and prediction of the 8-9 May 2007 Oklahoma Tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139, 224-246,
Schenkman A. D.,M. Xue, A. Shapiro, K. Brewster, and J. D. Gao, 2011b: Impact of CASA radar and Oklahoma mesonet data assimilation on the analysis and prediction of tornadic mesovortices in an MCS. Mon. Wea. Rev., 139, 3422-3445,
Smith, Jr. P. L., C. G. Myers, H. D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteor., 14, 1156-1165,<1156:rrfcin>;2.
Snook N.,M. Xue, and Y. Jung, 2015: Multiscale EnKF assimilation of radar and conventional observations and ensemble forecasting for a tornadic mesoscale convective system. Mon. Wea. Rev., 143, 1035-1057,
Snyder C.,F. Q. Zhang, 2003: Assimilation of simulated doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677,
Sun J. Z.,N. A. Crook, 1997: Dynamical and microphysical retrieval from doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642-1661,<1642:damrfd>;2.
Sun J. Z.,N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117-132,<0117:rtllwa>;2.
Sun J. Z.,J. W. Wilson, 2003: The assimilation of radar data for weather prediction. Meteor. Monogr., 30, 175-198,<0175:taordf>;2.
Tong M. J.,M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789-1807,
Trapp R. J.,M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804-2823,<2804:lmwsla>;2.
Wainwright C. E.,D. T. Dawson II, M. Xue, and G. F. Zhang, 2014: Diagnosing the intercept parameters of the exponential drop size distributions in a single-moment microphysics scheme and impact on supercell storm simulations. Journal of Applied Meteorology and Climatology, 53, 2072-2090,
Wakimoto R. M.,P. Stauffer, and W.-C. Lee, 2015: The vertical vorticity structure within a squall line observed during BAMEX: Banded vorticity features and the evolution of a bowing segment. Mon. Wea. Rev., 143, 341-362,
Wu B.,J. Verlinde, and J. Z. Sun, 2000: Dynamical and microphysical retrievals from doppler radar observations of a deep convective cloud. J. Atmos. Sci., 57, 262-283,<0262:damrfd>;2.
Xue M.,M. J. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 46-66,
Yang M.-H.,R. A. Houze Jr.,1995: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123, 3175-3193,<3175:soslri>;2.
Zhang G. F.,M. Xue, Q. Cao, and D. Dawson, 2008: Diagnosing the intercept parameter for exponential raindrop size distribution based on video disdrometer observations: Model development. Journal of Applied Meteorology and Climatology, 47, 2983-2992,