Aitken, M. L., B. Kosović, J. D. Mirocha, and J. K. Lundquist, 2014: Large eddy simulation of wind turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting Model. Journal of Renewable and Sustainable Energy, 6, 033137,
Alexandru, A., R. de Elia, R. Laprise, L. Separovic, and S. Biner, 2009: Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon. Wea. Rev., 137, 1666−1686,
Anderson, T. W., 1962: On the distribution of the two-sample cramer-von mises criterion. The Annals of Mathematical Statistics, 33, 1148−1159,
Barlage, M., F. Chen, and D. Bromwhich, 2008: Noah Land Surface Model Soil Depth Modifications for Arctic Regional Climate Simulations. American Geophysical Union Fall Meeting 2008, San Francisco, CA, American Geophysical Union. [Available online from]
Bastin, S., M. Chiriaco, and P. Drobinski, 2018: Control of radiation and evaporation on temperature variability in a WRF regional climate simulation: Comparison with colocated long term ground based observations near Paris. Climate Dyn., 51, 985−1003,
Bechler, A., M. Vrac, and L. Bel, 2015: A spatial hybrid approach for downscaling of extreme precipitation fields. J. Geophys. Res., 120, 4534−4550,
Bowden, J. H., T. L. Otte, C. G. Nolte, and M. J. Otte, 2012: Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J. Climate, 25, 2805−2823,
Bowden, J. H., C. G. Nolte, and T. L. Otte, 2013: Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology. Climate Dyn., 40, 1903−1920,
Bruyère, C. L., J. M. Done, G. J. Holland, and S. Fredrick, 2014: Bias corrections of global models for regional climate simulations of high-impact weather. Climate Dyn., 43, 1847−1856,
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569−585,<0569:CAALSH>2.0.CO;2.
Colette, A., R. Vautard, and M. Vrac, 2012: Regional climate downscaling with prior statistical correction of the global climate forcing. Geophys. Res. Lett., 39, L13707,
Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122−2143,
Cramer, H., 1928: On the composition of elementary errors. Scandinavian Actuarial Journal, 1928, 141−180,
Davis, N., A. N. Hahmann, N.-L. Clausen, and M. Žagar, 2014: Forecast of icing events at a wind farm in Sweden. Journal of Applied Meteorology and Climatology, 53, 262−281,
D’Agostino, R. B., and M. A. Stephens, 1986: Goodness-of-Fit-Techniques. Marcel Dekker, Inc.
Dehling, H., and W. Philipp, 2002: Empirical process techniques for dependent data. Empirical Process Techniques for Dependent Data, H. G. Dehling, T. Mikosch, and M. Sørensen, Eds., Birkhäuser, 3−113,
Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global and Planetary Change, 57, 16−26,
Diaz-Nieto, J., and R. L. Wilby, 2005: A comparison of statistical downscaling and climate change factor methods: Impacts on low flows in the River Thames, United Kingdom. Climatic Change, 69, 245−268,
Dixon, K. W., J. R. Lanzante, M. J. Nath, K. Hayhoe, A. Stoner, A. Radhakrishnan, V. Balaji, and C. F. Gaitan, 2016: Evaluating the stationarity assumption in statistically downscaled climate projections: Is past performance an indicator of future results? Climatic Change, 135, 395−408,
Dulière, V., Y. X. Zhang, and E. P. Salathé Jr., 2011: Extreme precipitation and temperature over the U.S. Pacific Northwest: A comparison between observations, reanalysis data, and regional models. J. Climate, 24, 1950−1964,
Duran, P., C. Meissner, K. Rutledge, R. Fonseca, J. Martin-Torres, and M. S. Adaramola, 2019: Meso-microscale coupling for wind resource assessment using averaged atmospheric stability conditions. Meteorol. Z.,
Duynkerke, P. G., 1991: Radiation fog: A comparison of model simulation with detailed observations. Mon. Wea. Rev., 119, 324−341,<0324:RFACOM>2.0.CO;2.
Ebisuzaki, W., and L. Zhang, 2011: Assessing the performance of the CFSR by an ensemble of analyses. Climate Dyn., 37, 2541−2550,
Famien, A. M., S. Janicot, A. D. Ochou, M. Vrac, D. Defrance, B. Sultan, and T. Noël, 2018: A bias-corrected CMIP5 dataset for Africa using the CDF-t method-a contribution to agricultural impact studies. Earth System Dynamics, 9, 313−338,
Fan, K., Y. Liu, and H. P. Chen, 2012: Improving the prediction of the East Asian summer monsoon: New approaches. Wea. Forecasting, 27, 1017−1030,
Fay, M. P., and M. A. Proschan, 2010: Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4, 1−39,
Field, A. P., 2013: Discovering Statistics Using IBM SPSS Statistics: and Sex and Drugs and Rock 'N' Roll. 4th ed. SAGE, 915 pp.
Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad, 2012: Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Wea. Rev., 140, 3017−3038,
Flaounas, E., P. Drobinski, M. Vrac, S. Bastin, C. Lebeaupin-Brossier, M. Stéfanon, M. Borga, and J.-C. Calvet, 2013: Precipitation and temperature space-time variability and extremes in the Mediterranean region: Evaluation of dynamical and statistical downscaling methods. Climate Dyn., 40, 2687−2705,
Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27, 1547−1578,
Free, M., B. M. Sun, and H. L. Yoo, 2016: Comparison between total cloud cover in four reanalysis products and cloud measured by visual observations at U.S. weather stations. J. Climate, 29, 2015−2021,
García-Díez, M., J. Fernández, L. Fita, and C. Yagüe, 2013: Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139, 501−514,
Gray, L. J., T. J. Woollings, M. Andrews, and J. Knight, 2016: Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Quart. J. Roy. Meteor. Soc., 142, 1890−1903,
Hanssen-Bauer, I., C. Achberger, R. E. Benestad, D. Chen, and E. J. Forland, 2005: Statistical downscaling of climate scenarios over Scandinavia. Climate Research, 29, 255−268,
Heikkilä, U., A. Sandvik, and A. Sorteberg, 2014: Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dyn., 37, 1551−1564,
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103,
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927−945,<0927:TSMECM>2.0.CO;2.
Jylha, K., H. Tuomenvirta, and K. Ruosteenoja, 2004: Climate change projections for Finland during the 21st century. Boreal Environment Research, 9, 127−152.
Kallache, M., M. Vrac, P. Naveau, and P. A. Michelangeli, 2011: Nonstationary probabilistic downscaling of extreme precipitation. J. Geophys. Res., 116, 05113,
Katata, G., M. Kajino, T. Hiraki, M. Aikawa, T. Kobayashi, and H. Nagai, 2011: A method for simple and accurate estimation of fog deposition in a mountain forest using a meteorological model. J. Geophys. Res., 116, D20102,
Katragkou, E., and Coauthors, 2015: Regional climate Hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble. Geoscientific Model Development, 8, 603−618,
Ke, Z. J., P. Q. Zhang, L. J. Chen, and L. M. Du, 2011: An experiment of a statistical downscaling forecast model for summer precipitation over China. Atmospheric and Oceanic Science Letters, 4, 270−275,
Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geoscience, 6, 433−440,
Kjellström, E., L. Bärring, D. Jacob, R. Jones, G. Lenderink, and C. Schär, 2007: Modelling daily temperature extremes: Recent climate and future changes over Europe. Climatic Change, 81, 249−265,
Koenigk, T., L. Brodeau, R. G. Graversen, J. Karlsson, G. Svensson, M. Tjernström, U. Willén, and K. Wyser, 2013: Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Climate Dyn., 40, 2719−2743,
Koh, T.-Y., and R. M. Fonseca, 2016: Subgrid-scale cloud-radiation feedback for the Betts-miller- Janjić convection scheme. Quart. J. Roy. Meteor. Soc., 142, 989−1006,
Kotlarski, S., and Coauthors, 2014: Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development, 7, 1297−1333,
Landman, W. A., and W. J. Tennant, 2000: Statistical downscaling of monthly forecasts. International Journal of Climatology, 20, 1521−1532,<1521::AID-JOC558>3.0.CO;2-N.
Lanzante, J. R., K. W. Dixon, M. J. Nath, C. E. Whitlock, and D. Adams-Smith, 2018: Some pitfalls in statistical downscaling of future climate. Bull. Amer. Meteor. Soc., 99, 791−803,
Lanzante, J. R., M. J. Nath, C. E. Whitlock, K. W. Dixon, and D. Adams-Smith, 2019: Evaluation and improvement of tail behaviour in the cumulative distribution function transform downscaling method. International Journal of Climatology, 39, 2449−2460,
Laprise, R., 2008: Regional climate modelling. J. Comput. Phys., 227, 3641−3666,
Lavaysse, C., M. Vrac, P. Drobinski, M. Lengaigne, and T. Vischel, 2012: Statistical downscaling of the French Mediterranean climate: Assessment for present and projection in an anthropogenic scenario. Natural Hazards and Earth System Sciences, 12, 651−670,
Leppäranta, M., and A. Seinä, 1985: Freezing, maximum annual ice thickness and breakup of ice on the Finnish coast during 1830−1984. Geophysica, 21, 87−104.
Linderson, M.-J., 2001: Objective classification of atmospheric circulation over southern Scandinavia. International Journal of Climatology, 21, 155−169,
Lo, J. C. F., Z. L. Yang, and R. A. Pielke, 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) Model. Geophys. Res. Lett., 113, D09112,
Ma, Y. Y., Y. Yang, X. P. Mai, C. J. Qiu, X. Long, and C. H. Wang, 2016: Comparison of analysis and spectral nudging techniques for dynamical downscaling with the WRF model over China. Advances in Meteorology, 2016, 4761513,
Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18, 50−60,
Merino, A., and Coauthors, 2015: Cloud top height estimation from WRF model: Application to the infrared camera onboard EUSO-Balloon (CNES). Proceedings of the. 34th International. Cosmic Ray Conf.erence, 30th July−6th August, The Hague, The Netherlands.
Michelangeli, P.-A., M. Vrac, and H. Loukos, 2009: Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett., 36, L11708,
Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104,
Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2005: Regional climate simulations over North America: Interaction of local processes with improved large-scale flow. J. Climate, 18, 1227−1246,
Mills, C. M., 2011: On the weather research and forecasting model's treatment of sea ice albedo over the arctic ocean. Proc. 10th Annual School of Earth, Society, and Environmental Research Review, Urbana-Campaign, IL, University of Illinois.
Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere. Trans. Geophys. Inst. Akad. Nauk USSR, 151, 163−187.
Nakanishi, M., 2000: Large-eddy simulation of radiation fog. Bound.-Layer Meteor., 94, 461−493,
Nakanishi, M., and H. Niino, 2006: An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397−407,
Neuhäuser, M., 2011: Wilcoxon-Mann-Whitney test. International Encyclopedia of Statistical Science, M. Lovric, Ed., Springer,
Nikulin, G., E. Kjellström, U. Hansson, G. Strandberg, and A. Ullerstig, 2011: Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A: Dynamic Meteorology and Oceanography, 63, 41−55,
Otte, T. L., C. G. Nolte, M. J. Otte, and J. H. Bowden, 2012: Does nudging squelch the extremes in regional climate modeling? J. Climate, 25, 7046−7066,
Overland, J. E., and Coauthors, 2016: Nonlinear response of mid-latitude weather to the Changing Arctic. Nat. Clim. Change, 6, 992−999,
Pan, X. D., X. Li, X. K. Shi, X. J. Han, L. H. Luo, and L. X. Wang, 2012: Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe River Basin, China. Frontiers of Earth Science, 6, 314−323,
Pepin, N. C., M. K. Schaefer, and L. D. Riddy, 2009: Quantification of the cold-air pool in Kevo valley, Finnish Lapland. Weather, 64, 60−67,
Pierce, D. W., D. R. Cayan, E. P. Maurer, J. T. Abatzoglou, and K. C. Hegewisch, 2015: Improved bias correction techniques for hydrological simulations of climate change. Journal of Hydrometeorology, 16, 2421−2442,
Rummukainen, M., J. Räisänen, B. Bringfelt, A. Ullerstig, A. Omstedt, U. Willén, U. Hansson, and C. Jones, 2001: A regional climate model for northern Europe: model description and results from the downscaling of two GCM control simulations. Climate Dyn., 17, 339−359,
Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015−1058,
Seneviratne, S. I., M. G. Donat, B. Mueller, and L. V. Alexander, 2014: No pause in the increase of hot temperature extremes. Nat. Clim. Change, 4, 161−163,
Sheffield, J., and Coauthors, 2003: Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model-simulated snow cover extent. J. Geophys. Res., 108, GCP 10,
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note TN-4175 STR, 113 pp,
Soares, P. M. M., R. M. Cardoso, P. M. A. Miranda, J. de Medeiros, M. Belo-Pereira, and F. Espirito-Santo, 2012: WRF high resolution dynamical downscaling of ERA-interim for portugal. Climate Dyn., 39, 2497−2522,
Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 1250−1277,<1250:UOFDDA>2.0.CO;2.
Steeneveld, G.-J., 2014: Current challenges in understanding and forecasting stable boundary layers over land and ice. Frontiers in Environmental Science, 2, 41,
Steinhoff, D. F., D. H. Bromwich, J. C. Speirs, H. A. McGowan, and A. J. Monaghan, 2014: Austral summer foehn winds over the McMurdo dry valleys of Antarctica from Polar WRF. Quart. J. Roy. Meteor. Soc., 140, 1825−1837,
Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23 895−23 915,
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095−5115,
Toniazzo, T., and A. A. Scaife, 2006: The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett., 33, L24704,
Trigo, R. M., T. J. Osborn, and J. M. Corte-Real, 2002: The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Climate Research, 20, 9−17,
Vigaud, N., M. Vrac, and Y. Caballero, 2013: Probabilistic downscaling of GCM scenarios over southern India. International Journal of Climatology, 33, 1248−1263,
von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664−3673,<3664:ASNTFD>2.0.CO;2.
Vrac, M., P. Drobinski, A. Merlo, M. Herrmann, C. Lavaysse, L. Li, and S. Somot, 2012: Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment. Natural Hazards and Earth System Sciences, 12, 2769−2784,
Waldron, K. M., J. Paegle, and J. D. Horel, 1996: Sensitivity of a spectrally filtered and nudged limited-area model to outer model options. Mon. Wea. Rev., 124, 529−547,<0529:SOASFA>2.0.CO;2.
Wang, J. F., R. M. Fonseca, K. Rutledge, J. Martín-Torres, and J. Yu, 2019: Weather simulation uncertainty estimation using Bayesian hierarchical models. Journal of Applied Meteorology and Climatology, 58, 585−603,
Warrach-Sagi, K., T. Schwitalla, V. Wulfmeyer, and H.-S. Bauer, 2013: Evaluation of a climate simulation in Europe based on the WRF-NOAH model system: Precipitation in Germany. Climate Dyn., 41, 755−774,
Wei, F. Y., and J. Y. Huang, 2010: A study of predictability for summer precipitation on East China using downscaling techniques. Journal of Tropical Meteorology, 26, 483−488, (in Chinese with English abstract)
Wilby, R. L., and T. M. L. Wigley, 1997: Downscaling general circulation model output: A review of methods and limitations. Progress in Physical Geography: Earth and Environment, 21, 530−548,
Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press.
Wootten, A., J. J. Bowden, R. Boyles, and A. Terando, 2016: The sensitivity of WRF downscaled precipitation in Puerto Rico to cumulus parameterization and interior grid nudging. Journal of Applied Meteorology and Climatology, 65, 2263−2281,
Wu, W., Z. R. Liang, and X. C. Liu, 2018: Projection of the daily precipitation using CDF-T method at meteorological observation site scale. Plateau Meteorology, 37, 796−805, (in Chinese with English abstract)
Zeng, X. B., and A. Beljaars, 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett., 32, L14605,
Zorita, E., and H. von Storch, 1999: The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Climate, 12, 2474−2489,<2474:TAMAAS>2.0.CO;2.