Balkovič, J., and Coauthors, 2014: Global wheat production potentials and management flexibility under the representative concentration pathways. Global and Planetary Change, 122, 107−121, https://doi.org/10.1016/j.gloplacha.2014.08.010.
Barlow, K. M., B. P. Christy, G. J. O’Leary, P. A. Riffkin, and J. G. Nuttall, 2015: Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Research, 171, 109−119, https://doi.org/10.1016/j.fcr.2014.11.010.
Bondeau, A., and Coauthors, 2007: Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13, 679−706, https://doi.org/10.1111/j.1365-2486.2006.01305.x.
de Wit, A. J. W., and C. A. Van Diepen, 2008: Crop growth modelling and crop yield forecasting using satellite-derived meteorological inputs. International Journal of Applied Earth Observation and Geoinformation, 10, 414−425, https://doi.org/10.1016/j.jag.2007.10.004.
Deryng, D., W. J. Sacks, C. C. Barford, and N. Ramankutty, 2011: Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles, 25, GB2006, https://doi.org/10.1029/2009GB003765.
Deryng, D., D. Conway, N. Ramankutty, J. Price, and R. Warren, 2014: Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 9, 034011, https://doi.org/10.1088/1748-9326/9/3/034011.
Elliott, J., and Coauthors, 2014: The parallel system for integrating impact models and sectors (pSIMS). Environmental Modelling & Software, 62, 509−516, https://doi.org/10.1016/j.envsoft.2014.04.008.
Elliott, J., and Coauthors, 2015: The global gridded crop model intercomparison: Data and modeling protocols for phase 1 (v1.0). Geoscientific Model Development, 8, 261−277, https://doi.org/10.5194/gmd-8-261-2015.
FAO, 2021: World Food and Agriculture—Statistical Yearbook 2020. Food and Agriculture Organization of the United Nations, Rome, 353 pp, https://doi.org/10.4060/cb1329en.
FAOSTAT, 2022: Food and agriculture data. [Available online from https://www.fao.org/faostat/en/#home]
Folberth, C., T. Gaiser, K. C. Abbaspour, R. Schulin, and H. Yang, 2012: Regionalization of a large-scale crop growth model for sub-Saharan Africa: Model setup, evaluation, and estimation of maize yields. Agriculture, Ecosystems & Environment, 151, 21−33, https://doi.org/10.1016/j.agee.2012.01.026.
Franke, J. A., and Coauthors, 2020: The GGCMI Phase 2 experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0). Geoscientific Model Development, 13, 2315−2336, https://doi.org/10.5194/gmd-13-2315-2020.
Ghose, B., 2014: Food security and food self-sufficiency in China: From past to 2050. Food and Energy Security, 3, 86−95, https://doi.org/10.1002/fes3.48.
Hantson, S., and Coauthors, 2020: Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development, 13, 3299−3318, https://doi.org/10.5194/gmd-13-3299-2020.
Heinicke, S., K. Frieler, J. Jägermeyr, and M. Mengel, 2022: Global gridded crop models underestimate yield responses to droughts and heatwaves. Environmental Research Letters, 17, 044026, https://doi.org/10.1088/1748-9326/ac592e.
Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500−2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117−161, https://doi.org/10.1007/s10584-011-0153-2.
Jägermeyr, J., and Coauthors, 2020: A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences of the United States of America, 117, 7071−7081, https://doi.org/10.1073/pnas.1919049117.
Jones, J. W., and Coauthors, 2003: The DSSAT cropping system model. European Journal of Agronomy, 18, 235−265, https://doi.org/10.1016/S1161-0301(02)00107-7.
Keating, B. A., and Coauthors, 2003: An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267−288, https://doi.org/10.1016/S1161-0301(02)00108-9.
Kiniry, J. R., J. R. Williams, D. J. Major, R. C. Izaurralde, P. W. Gassman, M. Morrison, R. Bergentine, and R. P. Zentner, 1995: EPIC model parameters for cereal, oilseed, and forage crops in the northern Great Plains region. Canadian Journal of Plant Science, 75, 679−688, https://doi.org/10.4141/cjps95-114.
Kukal, M. S., and S. Irmak, 2018: Climate-driven crop yield and yield variability and climate change impacts on the U.S. Great Plains agricultural production. Scientific Reports, 8, 3450, https://doi.org/10.1038/s41598-018-21848-2.
Lawrence, D. M., and Coauthors, 2019: The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11, 4245−4287, https://doi.org/10.1029/2018MS001583.
Levis, S., A. Badger, B. Drewniak, C. Nevison, and X. L. Ren, 2018: CLMcrop yields and water requirements: Avoided impacts by choosing RCP 4.5 over 8.5. Climatic Change, 146, 501−515, https://doi.org/10.1007/s10584-016-1654-9.
Levis, S., G. B. Bonan, E. Kluzek, P. E. Thornton, A. Jones, W. J. Sacks, and C. J. Kucharik, 2012: Interactive crop management in the Community Earth System Model (CESM1): Seasonal influences on land–atmosphere fluxes. J. Climate, 25, 4839−4859, https://doi.org/10.1175/JCLI-D-11-00446.1.
Li, F., 2011: Probabilistic seasonal prediction of summer rainfall over East China based on multi-model ensemble schemes. Acta Meteorologica Sinica, 25, 283−292, https://doi.org/10.1007/s13351-011-0304-4.
Li, F., and Coauthors, 2019: Historical (1700−2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics, 19, 12 545−12 567,https://doi.org/10.5194/acp-19-12545-2019.
Li, Z. H., C. S. Zhan, S. Hu, L. K. Ning, L. F. Wu, and H. Guo, 2022: Evaluation of global gridded crop models (GGCMs) for the simulation of major grain crop yields in China. Hydrology Research, 53, 353−369, https://doi.org/10.2166/nh.2022.087.
Lindeskog, M., A. Arneth, A. Bondeau, K. Waha, J. Seaquist, S. Olin, and B. Smith, 2013: Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa. Earth System Dynamics, 4, 385−407, https://doi.org/10.5194/esd-4-385-2013.
Liu, L. L., Y. Zhu, L. Tang, W. X. Cao, and E. L. Wang, 2013: Impacts of climate changes, soil nutrients, variety types and management practices on rice yield in East China: A case study in the Taihu region. Field Crops Research, 149, 40−48, https://doi.org/10.1016/j.fcr.2013.04.022.
Liu, W. F., H. Yang, C. Folberth, X. Y. Wang, Q. Y. Luo, and R. Schulin, 2016: Global investigation of impacts of PET methods on simulating crop-water relations for maize. Agricultural and Forest Meteorology, 221, 164−175, https://doi.org/10.1016/j.agrformet.2016.02.017.
Lobell, D. B., G. Bala, and P. B. Duffy, 2006: Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett., 33, L06708, https://doi.org/10.1029/2005GL025492.
Lombardozzi, D. L., Y. Q. Lu, P. J. Lawrence, D. M. Lawrence, S. Swenson, K. W. Oleson, W. R. Wieder, and E. A. Ainsworth, 2020: Simulating agriculture in the Community Land Model version 5. J. Geophys. Res.: Biogeosci., 125, e2019JG005529, https://doi.org/10.1029/2019JG005529.
Luo, Y. C., Z. Zhang, Y. Chen, Z. Y. Li, and F. L. Tao, 2020: ChinaCropPhen1km: A high-resolution crop phenological dataset for three staple crops in China during 2000−2015 based on leaf area index (LAI) products. Earth System Science Data, 12, 197−214, https://doi.org/10.6084/m9.figshare.8313530.
Martre, P., and Coauthors, 2015: Multimodel ensembles of wheat growth: Many models are better than one. Global Change Biology, 21, 911−925, https://doi.org/10.1111/gcb.12768.
Müller, C., and Coauthors, 2017: Global gridded crop model evaluation: Benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 10, 1403−1422, https://doi.org/10.5194/gmd-10-1403-2017.
Müller, C., and Coauthors, 2019: The global gridded crop model intercomparison phase 1 simulation dataset. Scientific Data, 6, 50, https://doi.org/10.1038/s41597-019-0023-8.
Portmann, F. T., S. Siebert, and P. Döll, 2010: MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24, GB1011, https://doi.org/10.1029/2008GB003435.
Ray, D. K., J. S. Gerber, G. K. MacDonald, and P. C. West, 2015: Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989, https://doi.org/10.1038/ncomms6989.
Rosenzweig, C., and Coauthors, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111, 3268−3273, https://doi.org/10.1073/pnas.1222463110.
Rötter, R. P., M. Appiah, E. Fichtler, K. C. Kersebaum, M. Trnka, and M. P. Hoffmann, 2018: Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes—A review. Field Crops Research, 221, 142−156, https://doi.org/10.1016/j.fcr.2018.02.023.
Ruane, A. C., R. Goldberg, and J. Chryssanthacopoulos, 2015: Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200, 233−248, https://doi.org/10.1016/j.agrformet.2014.09.016.
Sinclair, T. R., and T. W. Rufty, 2012: Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Security, 1, 94−98, https://doi.org/10.1016/j.gfs.2012.07.001.
Sperber, K. R., H. Annamalai, I. S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711−2744, https://doi.org/10.1007/s00382-012-1607-6.
Sun, H. Y., X. Y. Zhang, S. Y. Chen, D. Pei, and C. M. Liu, 2007: Effects of harvest and sowing time on the performance of the rotation of winter wheat–summer maize in the North China Plain. Industrial Crops and Products, 25, 239−247, https://doi.org/10.1016/j.indcrop.2006.12.003.
Tian, S. Z., X. X. Dong, H. H. Guo, L. Dong, Y. F. Zhang, S. L. Liu, and J. F. Luo, 2019: Key soil nutrient requirements for different yield levels in North China. Soil Science and Plant Nutrition, 65, 519−524, https://doi.org/10.1080/00380768.2019.1639215.
Wallach, D., and Coauthors, 2018: Multimodel ensembles improve predictions of crop–environment–management interactions. Global Change Biology, 24, 5072−5083, https://doi.org/10.1111/gcb.14411.
Wang, E. L., Q. Yu, D. R. Wu, and J. Xia, 2008: Climate, agricultural production and hydrological balance in the North China Plain. International Journal of Climatology, 28, 1959−1970, https://doi.org/10.1002/joc.1677.
Wu, J., and X.-J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56, 1102−1111, https://doi.org/10.6038/cjg20130406. (in Chinese with English abstract
Wu, X., and Coauthors, 2016: ORCHIDEE-CROP (v0), a new process-based agro-land surface model: Model description and evaluation over Europe. Geoscientific Model Development, 9, 857−873, https://doi.org/10.5194/gmd-9-857-2016.
Xiao, D. P., and F. L. Tao, 2014: Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. European Journal of Agronomy, 52, 112−122, https://doi.org/10.1016/j.eja.2013.09.020.
Yin, Y., Q. Tang, and X. Liu, 2015: A multi-model analysis of change in potential yield of major crops in China under climate change. Earth System Dynamics, 6, 45−59, https://doi.org/10.5194/esd-6-45-2015.
Yu, Y. Q., Y. Huang, and W. Zhang, 2012: Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management. Field Crops Research, 136, 65−75, https://doi.org/10.1016/j.fcr.2012.07.021.
Zhao, H., and Coauthors, 2021: China’s future food demand and its implications for trade and environment. Nature Sustainability, 4, 1042−1051, https://doi.org/10.1038/s41893-021-00784-6.