Adon, M., and Coauthors, 2010: Long term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Africa using passive samplers. Atmospheric Chemistry and Physics, 10, 7467−7487, https://doi.org/10.5194/acp-10-7467-2010.
An, Z. S., and Coauthors, 2019: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proceedings of the National Academy of Sciences of the United States of America, 116, 8657−8666, https://doi.org/10.1073/pnas.1900125116.
Bouwman, A. F., D. S. Lee, W. A. H. Asman, F. J. Dentener, K. W. van der Hoek, and J. G. J. Olivier, 1997: A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles, 11, 561−587, https://doi.org/10.1029/97GB02266.
Chang, Y. H., X. J. Liu, C. R. Deng, A. J. Dore, and G. S. Zhuang, 2016: Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures. Atmospheric Chemistry and Physics, 16, 11635−11647, https://doi.org/10.5194/acp-16-11635-2016.
Chang, Y. H., Z. Zou, Y. L. Zhang, C. R. Deng, J. L. Hu, Z. H. Shi, A. J. Dore, and J. L. Collett Jr, 2019: Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity. Environ. Sci. Technol., 53, 1822−1833, https://doi.org/10.1021/acs.est.8b05984.
Felix, J. D., E. M. Elliott, T. J. Gish, L. L. McConnell, and S. L. Shaw, 2013: Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Communications in Mass Spectrometry, 27, 2239−2246, https://doi.org/10.1002/rcm.6679.
Felix, J. D., E. M. Elliott, T. Gish, R. Maghirang, L. Cambal, and J. Clougherty, 2014: Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios. Atmos. Environ., 95, 563−570, https://doi.org/10.1016/j.atmosenv.2014.06.061.
Freyer, H. D., 1978: Seasonal trends of NH4+ and NO3- nitrogen isotope composition in rain collected at Jülich, Germany. Tellus, 30, 83−92, https://doi.org/10.3402/tellusa.v30i1.10319.
Heaton, T. H. E., 1987: 15N14N ratios of nitrate and ammonium in rain at Pretoria, South Africa. Atmos. Environ., 21, 843−852, https://doi.org/10.1016/0004-6981(87)90080-1.
Höpfner, M., and Coauthors, 2019: Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nature Geoscience, 12, 608−612, https://doi.org/10.1038/s41561-019-0385-8.
Hristov, A. N., S. Zaman, M. Vander Pol, P. Ndegwa, L. Campbell, and S. Silva, 2009: Nitrogen losses from dairy manure estimated through nitrogen mass balance and chemical markers. Journal of Environmental Quality, 38, 2438−2448, https://doi.org/10.2134/jeq2009.0057.
Huang, X., and Coauthors, 2012: A high-resolution ammonia emission inventory in China. Global Biogeochemical Cycles, 26, GB1030, https://doi.org/10.1029/2011GB004161.
Ianniello, A., F. Spataro, G. Esposito, I. Allegrini, E. Rantica, M. P. Ancora, M. Hu, and T. Zhu, 2010: Occurrence of gas phase ammonia in the area of Beijing (China). Atmospheric Chemistry and Physics, 10, 9487−9503, https://doi.org/10.5194/acp-10-9487-2010.
Kawashima, H., 2019: Seasonal trends of the stable nitrogen isotope ratio in particulate nitrogen compounds and their gaseous precursors in Akita, Japan. Tellus B: Chemical and Physical Meteorology, 71, 1627846, https://doi.org/10.1080/16000889.2019.1627846.
Kendall, C., E. M. Elliott, and S. D. Wankel, 2007: Tracing anthropogenic inputs of nitrogen to ecosystems. Stable Isotopes in Ecology and Environmental Science, 2nd ed., R. Michener and K. Lajtha, Eds., Blackwell Publishing Ltd, https://doi.org/10.1002/9780470691854.ch12.
Li, Y., and Coauthors, 2016: Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences of the United States of America, 113, 5874−5879, https://doi.org/10.1073/pnas.1525736113.
Liu, D. W., Y. T. Fang, Y. Tu, and Y. P. Pan, 2014: Chemical method for nitrogen isotopic analysis of ammonium at natural abundance. Analytical Chemistry, 86, 3787−3792, https://doi.org/10.1021/ac403756u.
Liu, M. X., and Coauthors, 2018: Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and Physics, 18, 17933−17943, https://doi.org/10.5194/acp-18-17933-2018.
Liu, M. X., and Coauthors, 2019: Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proceedings of the National Academy of Sciences of the United States of America, 116, 7760−7765, https://doi.org/10.1073/pnas.1814880116.
Martin, N. A., and Coauthors, 2019: Validation of ammonia diffusive and pumped samplers in a controlled atmosphere test facility using traceable Primary Standard Gas Mixtures. Atmos. Environ., 199, 453−462, https://doi.org/10.1016/j.atmosenv.2018.11.038.
Meng, Z. Y., W. L. Lin, X. M. Jiang, P. Yan, Y. Wang, Y. M. Zhang, X. F. Jia, and X. L. Yu, 2011: Characteristics of atmospheric ammonia over Beijing, China. Atmospheric Chemistry and Physics, 11, 6139−6151, https://doi.org/10.5194/acp-11-6139-2011.
Pan, Y. P., and Coauthors, 2016: Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from 15N-stable isotope in size-resolved aerosol ammonium. Environ. Sci. Technol., 50, 8049−8056, https://doi.org/10.1021/acs.est.6b00634.
Pan, Y. P., and Coauthors, 2018: Identifying ammonia hotspots in China using a national observation network. Environ. Sci. Technol., 52, 3926−3934, https://doi.org/10.1021/acs.est.7b05235.
Pan, Y. P., and Coauthors, 2020a: Systematic low bias of passive samplers in characterizing nitrogen isotopic composition of atmospheric ammonia. Atmospheric Research, 243, 105018, https://doi.org/10.1016/j.atmosres.2020.105018.
Pan, Y. P., and Coauthors, 2020b: Ammonia should be considered in field experiments mimicking nitrogen deposition. Atmos. Ocean. Sci. Lett., 13, 48−251, https://doi.org/10.1080/16742834.2020.1733919.
Pan, Y. P., Y. S. Wang, G. Q. Tang, and D. Wu, 2012: Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmospheric Chemistry and Physics, 12, 6515−6535, https://doi.org/10.5194/acp-12-6515-2012.
Puchalski, M. A., M. E. Sather, J. T. Walker, C. M. B. Lehmann, D. A. Gay, J. Mathew, and W. P. Robarge, 2011: Passive ammonia monitoring in the United States: Comparing three different sampling devices. Journal of Environmental Monitoring, 13, 3156−3167, https://doi.org/10.1039/C1EM10553A.
Savard, M. M., A. Cole, A. Smirnoff, and R. Vet, 2017: δ15N values of atmospheric N species simultaneously collected using sector-based samplers distant from sources--Isotopic inheritance and fractionation. Atmos. Environ., 162, 11−22, https://doi.org/10.1016/j.atmosenv.2017.05.010.
Shephard, M. W., and Coauthors, 2020: Ammonia measurements from space with the Cross-track Infrared Sounder: Characteristics and applications. Atmospheric Chemistry and Physics, 20, 2277−2302, https://doi.org/10.5194/acp-20-2277-2020.
Smirnoff, A., M. M. Savard, R. Vet, and M. C. Simard, 2012: Nitrogen and triple oxygen isotopes in near-road air samples using chemical conversion and thermal decomposition. Rapid Communications in Mass Spectrometry, 26, 2791−2804, https://doi.org/10.1002/rcm.6406.
Sun, K., and Coauthors, 2017: Vehicle emissions as an important urban ammonia source in the United States and China. Environ. Sci. Technol., 51, 2472−2481, https://doi.org/10.1021/acs.est.6b02805.
Teng, X. L., Q. J. Hu, L. M. Zhang, J. J. Qi, J. H. Shi, H. Xie, H. W. Gao, and X. H. Yao, 2017: Identification of major sources of atmospheric NH3 in an urban environment in northern China during wintertime. Environ. Sci. Technol., 51, 6839−6848, https://doi.org/10.1021/acs.est.7b00328.
Ti, C. P., B. Gao, Y. X. Luo, X. Wang, S. W. Wang, and X. Y. Yan, 2018: Isotopic characterization of NHx-N in deposition and major emission sources. Biogeochemistry, 138, 85−102, https://doi.org/10.1007/s10533-018-0432-3.
von Bobrutzki, K., and Coauthors, 2010: Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmospheric Measurement Techniques, 3, 91−112, https://doi.org/10.5194/amt-3-91-2010.
Walters, W. W., and M. G. Hastings, 2018: Collection of ammonia for high time-resolved nitrogen isotopic characterization utilizing an acid-coated honeycomb denuder. Analytical Chemistry, 90, 8051−8057, https://doi.org/10.1021/acs.analchem.8b01007.
Walters, W. W., L. L. Song, J. J. Chai, Y. T. Fang, N. Colombi, and M. G. Hastings, 2020a: Constraining ammonia emissions in vehicle plumes utilizing nitrogen stable isotopes. Atmospheric Chemistry and Physics Discussions, https://doi.org/10.5194/acp-2020-188.
Walters, W. W., L. L. Song, J. J. Chai, Y. T. Fang, N. Colombi, and M. G. Hastings, 2020b: Constraining ammonia emissions in vehicle plumes utilizing nitrogen stable isotopes. Atmospheric Chemistry and Physics Discussions, https://doi.org/10.5194/acp-2020-188.
Wang, G. H., and Coauthors, 2016: Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 113, 13630−13635, https://doi.org/10.1073/pnas.1616540113.
Wang, S. S., and Coauthors, 2015: Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Scientific Reports, 5, 15842, https://doi.org/10.1038/srep15842.
Wang, Y. S., W. P. Yu, Y. P. Pan, and D. Wu, 2012: Acid Neutralization of precipitation in Northern China. Journal of the Air & Waste Management Association, 62, 204−211, https://doi.org/10.1080/10473289.2011.640761.
Warner, J. X., R. R. Dickerson, Z. Wei, L. L. Strow, Y. Wang, and Q. Liang, 2017: Increased atmospheric ammonia over the world's major agricultural areas detected from space. Geophys. Res. Lett., 44, 2875−2884, https://doi.org/10.1002/2016GL072305.
Zhang, Y. Y., K. B. Benedict, A. H. Tang, Y. L. Sun, Y. T. Fang, and X. J. Liu, 2020: Persistent nonagricultural and periodic agricultural emissions dominate sources of ammonia in urban Beijing: Evidence from 15N stable isotope in vertical profiles. Environ. Sci. Technol., 54, 102−109, https://doi.org/10.1021/acs.est.9b05741.