Alessandrini, S., L. D. Monache, S. Sperati, and G. Cervone, 2015: An analog ensemble for short-term probabilistic solar power forecast. Applied Energy, 157, 95−110,
Alpaydin, E., 2014: Introduction to Machine Learning. 3rd ed., The MIT Press, 640 pp.
Bishop, C. M., 2006: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, 738 pp.
Bogoslovskiy, N. N., S. I. Erin, I. A. Borodina, L. I. Kizhner, and K. A. Alipova, 2016: Satellite data assimilation in global numerical weather prediction model using kalman filter. Proceedings of SPIE 10035, 22nd International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russian Federation, SPIE, 100356Z,
Breiman, L., 2001a: Random forests. Machine Learning, 45(1), 5−32,
Breiman, L., 2001b: Statistical modeling: The two cultures. Statistical Science, 16(3), 199−215.
Buehner, M., R. McTaggart-Cowan, and S. Heilliette, 2017: An ensemble Kalman filter for numerical weather prediction based on variational data assimilation: VarEnKF. Mon. Wea. Rev., 145(2), 617−635,
Cabos, R., P. Hecker, N. Kneuper, and J. Schiefele, 2017: Wind forecast uncertainty prediction using machine learning techniques on big weather data. Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, Colorado, AIAA.
Cassola, F., and M. Burlando, 2012: Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Applied Energy, 99, 154−166,
Chattopadhyay, R., A. Vintzileos, and C. D. Zhang, 2013: A description of the Madden-Julian oscillation based on a self-organizing map. J. Climate, 26(5), 1716−1732,
Cheng, W. Y. Y., and W. J. Steenburgh, 2007: Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter techniques for improving model forecasts over the western United States. Wea. Forecasting, 22(6), 1304−1318,
Delle Monache, L., T. Nipen, Y. B. Liu, G. Roux, and R. Stull, 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139(11), 3554−3570,
Domingos, P., 2012: A few useful things to know about machine learning. Communications of the ACM, 55, 78−87.
Glahn, B., 2014: Determining an optimal decay factor for bias-correcting MOS temperature and dewpoint forecasts. Wea. Forecasting, 29(4), 1076−1090,
Glahn, B., M. Peroutka, J. Wiedenfeld, J. Wagner, G. Zylstra, B. Schuknecht, and B. Jackson, 2009: MOS uncertainty estimates in an ensemble framework. Mon. Wea. Rev., 137(1), 246−268,
Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11(8), 1203−1211,<1203:TUOMOS>2.0.CO;2.
Hart, K. A., W. J. Steenburgh, D. J. Onton, and A. J. Siffert, 2003: An evaluation of mesoscale-model-based model output statistics (MOS) during the 2002 Olympic and Paralympic winter games. Wea. Forecasting, 19(2), 200−218,<0200:AEOMMO>2.0.CO;2.
Haupt, S. E., and B. Kosovic, 2016: Big data and machine learning for applied weather forecasts: Forecasting solar power for utility operations. Proceedings of 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, IEEE, 496−501,
Haupt, S. E., A. Pasini, and C. Marzban, 2009: Artificial Intelligence Methods in the Environmental Sciences. Springer,
Jacks, E., J. Brent Bower, V. J. Dagostaro, J. Paul Dallavalle, M. C. Erickson, and J. C. Su, 2009: New NGM-based MOS guidance for maximum/minimum temperature, probability of precipitation, cloud amount, and surface wind. Wea. Forecasting, 5(5), 128−138,<0128:NNBMGF>2.0.CO;2.
Junk, C., L. Delle Monache, and S. Alessandrini, 2015: Analog-based ensemble model output statistics. Mon. Wea. Rev., 143(7), 2909−2917,
Lakshmanan, V., E. Gilleland, A. McGovern, and M. Tingley, 2015: Machine Learning and Data Mining Approaches to Climate Science. Springer International Publishing,
Marzban, C., S. Sandgathe, and E. Kalnay, 2006: MOS, perfect prog, and reanalysis. Mon. Wea. Rev., 134(2), 657−663,
Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83(3), 407−430,<0407:DIHRPM>2.3.CO;2.
Mirkin, B., 2011: Data analysis, mathematical statistics, machine learning, data mining: Similarities and differences. Proceedings of 2011 International Conference on Advanced Computer Science and Information Systems, Jakarta, Indonesia, IEEE, 1−8.
Mjolsness, E., and D. Decoste, 2001: Machine learning for science: State of the art and future prospects. Science, 293(5537), 2051−2055,
Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122(529), 73−119,
Monache, L. D., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141(10), 3498−3516,
Paegle, J., Q. Yang, and M. Wang, 1997: Predictability in limited area and global models. Meteor. Atmos. Phys., 63(1−2), 53−69,
Pelosi, A., H. Medina, J. Van Den Bergh, S. Vannitsem, and G. B. Chirico, 2017: Adaptive Kalman filtering for postprocessing ensemble numerical weather predictions. Mon. Wea. Rev., 145(12), 4837−4584,
Peng, X. D., Y. Z. Che, and J. Chang, 2013: A novel approach to improve numerical weather prediction skills by using anomaly integration and historical data. J. Geophys. Res., 118(16), 8814−8826,
Peng, X. D., Y. Z. Che, and J. Chang, 2014: Observational calibration of numerical weather prediction with anomaly integration. Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, EGU.
Plenković, I. O., L. D. Monache, K. Horvath, M. Hrastinski, and A. Bajić, 2016: Probabilistic wind speed predictions with an analog ensemble. Proceedings of the 6th EMS Annual Meeting & 11th European Conference on Applied Climatology, Trst, Italija, ECAC.
Rudack, D. E., and J. E. Ghirardelli, 2010: A comparative verification of localized aviation model output statistics program (LAMP) and numerical weather prediction (NWP) model forecasts of ceiling height and visibility. Wea. Forecasting, 25(4), 1161−1178,
Schiller, H., and R. Doerffer, 1999: Neural network for emulation of an inverse model operational derivation of case II water properties from MERIS data. Int. J. Remote Sens., 20(9), 1735−1746,
Sperati, S., S. Alessandrini, and L. Delle Monache, 2017: Gridded probabilistic weather forecasts with an analog ensemble. Quart. J. Roy. Meteor. Soc., 143, 2874−2885,
Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125(12), 3297−3319,<3297:EFANAT>2.0.CO;2.
Tsang, L., Z. Chen, S. Oh, R. J. Marks, and A. T. C. Chang, 1992: Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model. IEEE Trans. Geosci. Remote Sens., 30, 1015−1024,
Veenhuis, B. A., 2013: Spread calibration of ensemble MOS forecasts. Mon. Wea. Rev., 141(7), 2467−2482,
Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using gfs reforecasts. Mon. Wea. Rev., 135(6), 2379−2390,
Woo, W. C., and W. K. Wong, 2017: Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere, 8(3), 48,
Wu, J., H. Q. Pei, Y. Shi, J. Y. Zhang, and Q. H. Wang, 2007: The forecasting of surface air temperature using BP-MOS method based on the numerical forecasting results. Scientia Meteorologica Sinica, 27(4), 430−435, (in Chinese)
Wu, Q., M. Han, H. Guo, and T. Su, 2016: The optimal training period scheme of MOS temperature forecast. Journal of Applied Meteorological Science, 27(4), 426−434, (in Chinese)
Zhang, X. N., J. Cao, S. Y. Yang, and M. H. Qi, 2011: Multi-model compositive MOS method application of fine temperature forecast. Journal of Yunnan University, 33(1), 67−71. (in Chinese)