Bouttes, N., and J. M. Gregory, 2014: Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes. Environmental Research Letters, 9, 034004,
Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model-momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 1413−1426,<1413:OTPIOP>2.0.CO;2.
Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr, 32, 240−264,<0240:OTPIVD>2.0.CO;2.
Church, J. A., N. White, C. M. Domingues, D. P. Monselesan, and E. R. Miles, 2013: Sea-level and ocean heat-content change. International Geophysics, 103, 697−725,
Dai, Y. J., R. E. Dickinson, and Y. P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281−2299,<2281:ATMFCT>2.0.CO;2.
Dong, X., and F. Xue, 2016: Phase transition of the pacific decadal oscillation and decadal variation of the East Asian summer monsoon in the 20th century. Adv. Atmos. Sci., 33(3), 330−338,
Dong, X., T. H. Su, J. Wang, and R. P. Lin, 2014: Decadal variation of the Aleutian Low-Icelandic Low seesaw simulated by a climate system model (CAS-ESM-C). Atmos. Ocean. Sci. Lett., 7(2), 110−114,
Dong, X., R. P. Lin, J. Zhu, and Z. T. Lu, 2016: Evaluation of ocean data assimilation in CAS-ESM-C: Constraining the SST field. Adv. Atmos. Sci., 33, 795−807,
Dong, X., and Coauthors, 2021a: CAS-ESM2.0 model datasets for the CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1). Adv. Atmos. Sci., 38(2), 307−316,
Dong, X., F. Zheng, R. P. Lin, H. P. Yang, J. Zhu, M. J. Du, and H. Luo, 2021b: A reasonable mean dynamic topography state on improving the ability of assimilating the altimetry observations into a coupled climate system model: An example with CAS-ESM-C. J. Geophys. Res., 126(2), e2020JC016760,
Du, M. J., F. Zheng, J. Zhu, R. P. Lin, H. P. Yang, and Q. L. Chen, 2020: A new ensemble-based approach to correct the systematic ocean temperature bias of CAS-ESM-C to improve its simulation and data assimilation abilities. J. Geophys. Res., 125, e2020JC016406,
Garuba, O. A., and B. A. Klinger, 2016: Ocean heat uptake and inter-basin transport of passive and redistributive surface heating. J. Climate, 29, 7507−7527,
Garuba, O. A., and B. A. Klinger, 2018: The role of individual surface flux components in the passive and active ocean heat uptake. J. Climate, 31, 6157−6173,
Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150−155,<0150:IMIOCM>2.0.CO;2.
Gregory, J. M., and Coauthors, 2005: A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett., 32, L12703,
Gregory, J. M., and Coauthors, 2016: The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: Investigation of sea-level and ocean climate change in response to CO2 forcing. Geoscientific Model Development, 9, 3993−4017,
Griffies, S. M., and Coauthors, 2009: Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26(1-2), 1−46,
Huber, M. B., and L. Zanna, 2017: Drivers of uncertainty in simulated ocean circulation and heat uptake. Geophys. Res. Lett., 44, 1402−1413,
Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos sea ice model documentation and software user’s manual, version 4. 0. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76pp.
Ji, D., and Coauthors, 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geoscientific Model Development, 7, 2039−2064,
Jin, J. B., and Coauthors, 2021: CAS-ESM2.0 model datasets for the CMIP6 Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP). Adv. Atmos. Sci., 38(2), 296−306,
Jin, J. B., Q. C. Zeng, L. Wu, H. L. Liu, and M. H. Zhang, 2017: Formulation of a new ocean salinity boundary condition and impact on the simulated climate of an oceanic general circulation model. Science China Earth Sciences, 60, 491−500,
Kajtar, J. B., A. Santoso, M. Collins, A. S. Taschetto, M. H. England, and L. M. Frankcombe, 2021: CMIP5 intermodel relationships in the baseline Southern Ocean climate system and with future projections. Earth's Future, 9, e2020EF001873,
Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608,
Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR/TN-460+STR, CGD Division of the National Center for Atmospheric Research,
Lin, R. P., J. Zhu, and F. Zheng, 2016: Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols. Scientific Reports, 6, 38546,
Lin, R. P., J. Zhu, and F. Zheng, 2019: The application of the SVD method to reduce coupled model biases in seasonal predictions of rainfall. J. Geophy. Res., 124, 11837−11849,
Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2.0. Acta Meteorologica Sinica, 26, 318−329,
Lyu, K., X. B. Zhang, and J. A. Church, 2020: Regional dynamic sea level simulated in the CMIP5 and CMIP6 models: Mean biases, future projections, and their linkages. J. Climate, 33(15), 6377−6398,
Marshall, J., K. C. Armour, J. R. Scott, Y. Kostov, U. Hausmann, D. Ferreira, T. G. Shepherd, and C. M. Bitz, 2014: The ocean's role in polar climate change: Asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philosophical Transactions of the Royal Society A: Mathematical, 372,20130040,
Pacanowski, R. C., 1995: MOM 2 Documentation, user’s guide and reference manual. GFDL Ocean Tech. Rep. No.3, 232 pp.
Rahmstorf, S., and A. Ganapolski, 1999: Long-term global warming scenarios computed with an efficient coupled climate model. Climatic Change, 43, 353−367,
Sen Gupta, A., A. Santoso, A. S. Taschetto, C. C. Ummenhofer, J. Trevena, and M. H. England, 2009: Projected changes to the southern hemisphere Ocean and sea ice in the IPCC AR4 climate models. J. Climate, 22, 3047−3078,
Su, T. H., F. Xue, H. C. Sun, and G. Q. Zhou, 2015: The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences. Acta Oceanologica Sinica, 34(1), 55−65,
Todd, A., and Coauthors, 2020: Ocean-only FAFMIP: Understanding regional patterns of ocean heat content and dynamic sea level change. Journal of Advances in Modeling Earth Systems, 12, e2019MS002027,
Walsh, J. E., W. L. Chapman, and F. Fetterer, 2015: Updated 2016. Gridded Monthly Sea Ice Extent and Concentration, 1850 Onwards, Version 1.1, National Snow and Ice Data Center (NSIDC).
Winton, M., S. M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Frölicher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 2268−2278,
Xie, P., and G. K. Vallis, 2012: The passive and active nature of ocean heat uptake in idealized climate change experiments. Climate Dyn., 38, 667−684,
Zhang, H., and Coauthors, 2020: Description and climate simulation performance of CAS-ESM version 2. Journal of Advances in Modeling Earth Systems, 12, e2020MS002210,
Zhang, H., M. H. Zhang, and Q. C. Zeng, 2013: Sensitivity of simulated climate to two atmospheric models: Interpretation of differences between dry models and moist models. Mon. Wea. Rev., 141, 1558−1576,