Bjordal, J., T. Storelvmo, K. Alterskjær, and T. Carlsen, 2020: Equilibrium climate sensitivity above 5°C plausible due to state-dependent cloud feedback. Nature Geoscience, 13(11), 718−721,
Bodas-Salcedo, A., and Coauthors, 2014: Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Climate, 27, 41−56,
Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nature Geoscience, 8, 261−268,
Ceppi, P., Y.-T. Hwang, D. M. W. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708,
Dolinar, E. K., X. Q. Dong, B. K. Xi, J. H. Jiang, and H. Su, 2015: Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Climate Dyn., 44, 2229−2247,
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937−1958,
Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29−56,<0029:AOOTRO>2.0.CO;2.
Haynes, J. M., C. Jakob, W. B. Rossow, G. Tselioudis, and J. Brown, 2011: Major characteristics of Southern Ocean cloud regimes and their effects on the energy budget. J. Climate, 24, 5061−5080,
Hwang, Y. T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 4935−4940,
IPCC, 2014a: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 571−657,
IPCC, 2014b: Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 741−882,
Jian, B. D., J. M. Li, G. Y. Wang, Y. X. Zhao, Y. R. Li, J. Wang, M. Zhang, and J. P. Huang, 2021: Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors. Atmospheric Chemistry and Physics, 21, 9809−9828,
Jiang, J, H. Su, L. T. Wu, C. X. Zhai, and K. A. Schiro, 2021: Improvements in cloud and water vapor simulations over the tropical oceans in CMIP6 compared to CMIP5,. Earth and Space Science, 8(5), e2020EA001520,
Kang, L. T., R. Marchand, and W. Smith, 2021: Evaluation of MODIS and Himawari-8 low clouds retrievals over the Southern Ocean with in situ measurements from the SOCRATES campaign. Earth and Space Science, 8, e2020EA001397,
Kato, S., and Coauthors, 2018: Surface irradiances of edition 4.0 Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 4501−4527,
Loeb, N. G., and Coauthors, 2018a: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895−918,
Loeb, N. G., and Coauthors, 2018b: Impact of ice cloud microphysics on satellite cloud retrievals and broadband flux radiative transfer model calculations. J. Climate, 31(5), 1851−1864,
Luo, N., Y. Guo, J. M. Chou, and Z. B. Gao, 2022: Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. International Journal of Climatology, 42, 1148−1164,
Marchand, R., and Coauthors, 2014: The Southern Ocean Clouds, Radiation Aerosol Transport Experimental Study (SOCRATES). Available from
Mauritsen, T., and Coauthors, 2019: Developments in the MPI-M Earth System Model Version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11, 998−1038,
McCoy, I. L., and Coauthors, 2020: The hemispheric contrast in cloud microphysical properties constrains aerosol forcing. Proceedings of the National Academy of Sciences of the United States of America, 117(32), 18 998−19 006,
Pan, B. W., Y. Wang, T. Logan, J.-S. Hsieh, J. H. Jiang, Y. X. Li, and R. Y. Zhang, 2020: Determinant role of aerosols from industrial sources in Hurricane Harvey's catastrophe. Geophys. Res. Lett., 47, e2020GL090014,
Ramanathan, V, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science, 243(4887), 57−63,
Schiro, K. A., H. Su, Y. Wang, B. Langenbrunner, J. H. Jiang, and J. D. Neelin, 2019: Relationships between tropical ascent and high cloud fraction changes with warming revealed by perturbation physics experiments in CAM5. Geophys. Res. Lett., 46(16), 10 112−10 121,
Schneider, S. H., 1972: Cloudiness as a global climatic feedback mechanism: The effects on the radiation balance and surface temperature of variations in cloudiness. J. Atmos. Sci., 29, 1413−1422,<1413:CAAGCF>2.0.CO;2.
Shea, Y. L., B. A. Wielicki, S. Sun-Mack, and P. Minnis, 2017: Quantifying the dependence of satellite cloud retrievals on instrument uncertainty. J. Climate, 30(17), 6959−6976,
Slingo, A., 1990: Sensitivity of the Earth's radiation budget to changes in low clouds. Nature, 343, 49−51,
Stanfield, R. E., X. Q. Dong, B. K. Xi, A. D. Del Genio, P. Minnis, D. Doelling, and N. Loeb, 2015: Assessment of NASA GISS CMIP5 and Post-CMIP5 simulated clouds and TOA radiation budgets using satellite observations. Part II: TOA radiation budget and CREs. J. Climate, 28(5), 1842−1864,
Tan, I., T. Storelvmo, and M. D. Zelinka, 2016: Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science, 352(6282), 224−227,
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106(D7), 7183−7192,
Teng, S. W., C. Liu, Z. B. Zhang, Y. Wang, B. Sohn, Y. L. Yung, 2020: Retrieval of Ice-over-water cloud microphysical and optical properties using passive radiometers. Geophys. Res. Lett., 47(16), e2020GL088941,
Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440−454,
Wang, Y., R. Y. Zhang, and R. Saravanan, 2014: Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nature Communications, 5, 3098,
Wang, Y., H. Su, J. H. Jiang, F. Xu, and Y. L. Yung, 2020: Impact of cloud ice particle size uncertainty in a climate model and implications for future satellite missions. J. Geophys. Res., 125, e2019JD032119,
Weatherhead, E. C., and Coauthors, 1998: Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res., 103, 17 149−17 161,
Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 3736−3754,
Zelinka, M. D., and Coauthors, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782,
Zhao, C. F., and T. J. Garrett, 2015: Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett., 42, 557−564,
Zhao, L. J., C. F. Zhao, Y. Wang, Y. Wang, and Y. K. Yang, 2020: Evaluation of cloud microphysical properties derived from MODIS and Himawari-8 using in situ aircraft measurements over the Southern Ocean. Earth and Space Science, 7, e2020EA001137,
Zhu, H. H., Z. H. Jiang, J. Li, W. Li, C. X. Sun, and L. Li, 2020: Does CMIP6 inspire more confidence in simulating climate extremes over China. Adv. Atmos. Sci., 37(10), 1119−1132,