Birgin, E. G., J. M. Martínez, and M. Raydan, 2001: Algorithm 813: SPG−Software for convex-constrained optimization. ACM Transactions on Mathematical Software (TOMS), 27, 340−349,
Capotondi, A., and P. D. Sardeshmukh, 2015: Optimal precursors of different types of ENSO events. Geophys. Res. Lett., 42, 9952−9960,
Chen, L., W. S. Duan, and H. Xu, 2015: A SVD-based ensemble projection algorithm for calculating the conditional nonlinear optimal perturbation. Science China Earth Sciences, 58, 385−394,
Duan, W. S., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbations as the optimal precursors for El Nino-Southern Oscillation events. J. Geophys. Res., 109(D23), D23105,
Duan, W. S., Y. S. Yu, H. Xu, and P. Zhao, 2013: Behaviors of nonlinearities modulating the El Niño events induced by optimal precursory disturbances. Climate Dyn., 40, 1399−1413,
Fan, Y., M. R. Allen, D. L. T. Anderson, and M. A. Balmaseda, 2000: How predictability depends on the nature of uncertainty in initial conditions in a coupled model of ENSO. J. Climate, 13, 3298−3313,<3298:HPDOTN>2.0.CO;2.
Gao, C., and R. H. Zhang, 2017: The roles of atmospheric wind and entrained water temperature (Te) in the second-year cooling of the 2010−12 La Niña event. Climate Dyn., 48, 597−617,
Gao, C., X. R. Wu, and R. H. Zhang, 2016: Testing a four-dimensional variational data assimilation method using an improved intermediate coupled model for ENSO analysis and prediction. Adv. Atmos. Sci., 33, 875−888,
Gao, C., R. H. Zhang, X. R. Wu, and J. C. Sun, 2018: Idealized experiments for optimizing model parameters using a 4D-variational method in an intermediate coupled model of ENSO. Adv. Atmos. Sci., 35, 410−422,
Hu, J. Y., and W. S. Duan, 2016: Relationship between optimal precursory disturbances and optimally growing initial errors associated with ENSO events: Implications to target observations for ENSO prediction. J. Geophys. Res., 121(5), 2901−2917,
Keenlyside, N. S., 2001: Improved modelling of zonal currents and SST in the tropical Pacific. PhD dissertation, Dept. of Mathematics and Statistics, Monash University Clayton, Victoria, Australia.
Keenlyside, N. S., and R. Kleeman, 2002: Annual cycle of equatorial zonal currents in the Pacific. J. Geophys. Res., 107, 3093,
Lee, H. C., A. Kumar, and W. Q. Wang, 2018: Effects of ocean initial perturbation on developing phase of ENSO in a coupled seasonal prediction model. Climate Dyn., 50, 1747−1767,
Mu, B., S. C. Wen, S. J. Yuan, and H. Y. Li, 2015: PPSO: PCA based particle swarm optimization for solving conditional nonlinear optimal perturbation. Computers & Geosciences, 83, 65−71,
Mu, B., J. H. Ren, and S. J. Yuan, 2017: An efficient approach based on the gradient definition for solving conditional nonlinear optimal perturbation. Mathematical Problems in Engineering, 2017, 3208431,
Mu, B., J. H. Ren, S. J. Yuan, and F. F. Zhou, 2019: Identifying typhoon targeted observations sensitive areas using the gradient definition based method. Asia-Pacific Journal of Atmospheric Sciences, 55, 195−207,
Mu, M., and W. S. Duan, 2003: A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation. Chinese Science Bulletin, 48, 1045−1047,
Mu, M., Y. S. Yu, H. Xu, and T. T. Gong, 2014: Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Niño predictions. Theor. Appl. Climatol., 115, 461−469,
Ren, J. H., S. J. Yuan, and B. Mu, 2016: Parallel modified artificial bee colony algorithm for solving conditional nonlinear optimal perturbation. Proc. 2016 IEEE 18th Int. Conf. on High Performance Computing and Communications; IEEE 14th Int. Conf. on Smart City; IEEE 2nd Int. Conf. on Data Science and Systems, Sydney, NSW, Australia, IEEE,
Rosati, A., K. Miyakoda, and R. Gudgel, 1997: The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon. Wea. Rev., 125, 754−772,<0754:TIOOIC>2.0.CO;2.
Tao, L. J., R. H. Zhang, and C. Gao, 2017: Initial error-induced optimal perturbations in ENSO predictions, as derived from an intermediate coupled model. Adv. Atmos. Sci., 34, 791−803,
Tao, L. J., C. Gao, and R. H. Zhang, 2018: ENSO predictions in an intermediate coupled model influenced by removing initial condition errors in sensitive areas: A target observation perspective. Adv. Atmos. Sci., 35, 853−867,
Wang, B., and X. W. Tan, 2010: Conditional nonlinear optimal perturbations: Adjoint-free calculation method and preliminary test. Mon. Wea. Rev., 138, 1043−1049,
Zhang, R. H., and C. Gao, 2016a: Role of subsurface entrainment temperature (Te) in the onset of El Niño events, as represented in an intermediate coupled model. Climate Dyn., 46, 1417−1435,
Zhang, R. H., and C. Gao, 2016b: The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015−2016 El Niño event. Science Bulletin, 61, 1061−1070,
Zhang, R. H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30,
Zhang, R. H., L. J. Tao, and C. Gao, 2018: An improved simulation of the 2015 El Niño event by optimally correcting the initial conditions and model parameters in an intermediate coupled model. Climate Dyn., 51, 269−282,