Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205−2231,<2205:TABTIO>2.0.CO;2.
Bishop, S. P., F. O. Bryan, and R. J. Small, 2015: Bjerknes-like compensation in the wintertime North Pacific. J. Phys. Oceanogr., 45, 1339−1355,
Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 1607−1623,<1607:ACSSOT>2.0.CO;2.
Cai, M., S. Yang, H. M. Van Den Dool, and V. E. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus A: Dynamic Meteorology and Oceanography, 59, 127−140,
Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression Analysis. J. Atmos. Sci., 50, 2038−2053,<2038:DDOBWA>2.0.CO;2.
Chang, E. K. M., and Y. F. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642−658,<0642:IVINHW>2.0.CO;2.
Chen, L. L., J. B. Fang, and X.-Q. Yang, 2020: Midlatitude unstable air-sea interaction with atmospheric transient eddy dynamical forcing in an analytical coupled model. Climate Dyn., 55, 2557−2577,
Chen, S. M., 2008: The Kuroshio Extension Front from satellite sea surface temperature measurements. Journal of Oceanography, 64, 891−897,
Chu, C. J., H. B. Hu, X.-Q. Yang, and D. J. Yang, 2020: Midlatitude atmospheric transient eddy feedbacks influenced ENSO-associated wintertime Pacific teleconnection patterns in two PDO phases. Climate Dyn., 54, 2577−2595,
Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606−623,<0606:OIOASA>2.0.CO;2.
Dai, X. L., Y. Zhang, and X.-Q. Yang, 2021: The budget of local available potential energy of low-frequency eddies in Northern Hemispheric winter. J. Climate, 34, 1241−1258,
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597,
Deser, C., R. A. Tomas, and S. L. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 4751−4767,
Dong, C. M., J. C. McWilliams, Y. Liu, and D. K. Chen, 2014: Global heat and salt transports by eddy movement. Nature Communication, 5, 3294,
Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2,. J. Geophys. Res.: Oceans, 105, 19477−19498,
Fang, J. B., and X.-Q. Yang, 2016: Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean–atmosphere system. Climate Dyn., 47, 1989−2007,
Feng, S. H., D. H. Luo, and L. H. Zhong, 2015: The relationship between mesoscale eddies in the Kuroshio Extension region and storm tracks in the North Pacific. Chinese Journal of Atmospheric Sciences, 39, 861−874. (in Chinese with English abstract)
Ferreira, D., and C. Frankignoul, 2005: The transient atmospheric response to midlatitude SST anomalies. J. Climate, 18, 1049−1067,
Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592−606,
Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762−777,
Gan, B. L., and L. X. Wu, 2014: Centennial trends in Northern Hemisphere winter storm tracks over the twentieth century. Quart. J. Roy. Meteor. Soc., 140, 1945−1957,
Heo, K.-Y., K.-J. Ha, and S.-S. Lee, 2012: Warming of western North Pacific Ocean and energetics of transient eddy activity. Mon. Wea. Rev., 140, 2860−2873,
Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Climate, 24, 3377−3401,
Huang, J., Y. Zhang, X.-Q. Yang, X. J. Ren, and H. B. Hu, 2020: Impacts of North Pacific subtropical and subarctic oceanic frontal zones on the wintertime atmospheric large-scale circulations. J. Climate, 33, 1897−1914,
Itoh, S., and I. Yasuda, 2010: Characteristics of mesoscale eddies in the Kuroshio–Oyashio Extension region detected from the distribution of the sea surface height anomaly. J. Phys. Oceanogr., 40, 1018−1034,
Jiang, Z. H., Y. Z. Wu, Z. Y. Liu, N. Wen, and C. Zhao, 2015: A diagnostic analysis of air temperature anomaly mode over China in 2009/2010 winter based on generalized equilibrium feedback assessment (GEFA) method. Journal of Tropical Meteorology, 21, 121−130,
Judge, G. G., R. C. Hill, W. E. Griffiths, H. Lütkepohl, and T.-C. Lee, 1988: Introduction to the Theory and Practice of Econometrics. 2nd ed., John Wiley and Sons, 1056 pp.
Kendall, M. G., 1946: The Advanced Theory of Statistics. Charles Griffin and Co, 521 pp.
Kida, S., and Coauthors, 2015: Oceanic fronts and jets around Japan: A review. Journal of Oceanography, 71, 469−497,
Kwon, Y.-O., and T. M. Joyce, 2013: Northern Hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio–Oyashio Extension variability. J. Climate, 26, 9839−9859,
Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 3249−3281,
Lee, S.-S., J. Y. Lee, B. Wang, K. J. Ha, K. Y. Heo, F. F. Jin, D. M. Straus, and J. Shukla, 2012: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Climate Dyn., 39, 313−327,
Liu, L., G. H. Wang, Z. Zhang, and H. Z. Wang, 2022: Effects of drag coefficients on surface heat flux during Typhoon Kalmaegi (2014). Adv. Atmos. Sci., 39, 1501−1518,
Liu, Z. Y., M. Notaro, J. Kutzbach, and N. Z. Liu, 2006: Assessing global vegetation–climate feedbacks from observations. J. Climate, 19, 787−814,
Liu, Z. Y., N. Wen, and Y. Liu, 2008: On the assessment of nonlocal climate feedback. Part I: The generalized equilibrium feedback assessment. J. Climate, 21, 134−148,
Luo, D. H., Y. N. Diao, and S. B. Feldstein, 2011: The variability of the Atlantic storm track and the North Atlantic Oscillation: A link between intraseasonal and interannual variability. J. Atmos. Sci., 68, 577−601,
Luo, D. H., S. H. Feng, and L. X. Wu, 2016: The eddy-dipole mode interaction and the decadal variability of the Kuroshio Extension system. Ocean Dynamics, 66, 1317−1332,
Ma, X. H., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. X. Wu, X. P. Lin, and L. X. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 1861−1880,
Ma, X., and Coauthors, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns. Scientific Reports, 5, 17785,
Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709,
Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2012: Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophys. Res. Lett., 39, L05804,
O'Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 52−66,
Qiu, B., and S. M. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 2090−2103,
Qiu, B., and S. M. Chen, 2010: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Research Part II: Topical Studies in Oceanography, 57, 1098−1110,
Qiu, B., N. Schneider, and S. M. Chen, 2007: Coupled decadal variability in the North Pacific: An observationally constrained idealized model. J. Climate, 20, 3602−3620,
Qiu, B., S. M. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 1751−1764,
Ren, X. J., X. Q. Yang, B. Han, and G. Y. Xu, 2007: North Pacific storm track variations in winter season and the coupled pattern with the midlatitude atmosphere-ocean system. Chinese Journal of Geophysics, 50, 94−103, (in Chinese with English abstract
Révelard, A., C. Frankignoul, and Y.-O. Kwon, 2018: A multivariate estimate of the cold season atmospheric response to North Pacific SST variability. J. Climate, 31, 2771−2796,
Révelard, A., C. Frankignoul, N. Sennéchael, Y.-O. Kwon, and B. Qiu, 2016: Influence of the decadal variability of the Kuroshio Extension on the atmospheric circulation in the cold season. J. Climate, 29, 2123−2144,
Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473−5496,
Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 1793−1814,
Seo, Y., S. Sugimoto, and K. Hanawa, 2014: Long-term variations of the Kuroshio Extension path in winter: Meridional movement and path state change. J. Climate, 27, 5929−5940,
Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274−319,
Strong, C., G. Magnusdottir, and H. Stern, 2009: Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Climate, 22, 6021−6032,
Sugimoto, S., and K. Hanawa, 2011: Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio– Oyashio confluence region: Influences of warm eddies detached from the Kuroshio Extension. J. Climate, 24, 6551−6561,
Sugimoto, S., N. Kobayashi, and K. Hanawa, 2014: Quasi-decadal variation in intensity of the western part of the winter subarctic SST front in the western North Pacific: The influence of Kuroshio Extension path state. J. Phys. Oceanogr., 44, 2753−2762,
Sun, X. G., L. F. Tao, and X.-Q. Yang, 2018: The influence of oceanic stochastic forcing on the atmospheric response to midlatitude North Pacific SST anomalies. Geophys. Res. Lett., 45, 9297−9304,
Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J. Geophys. Res.: Oceans, 108, 3304,
Tao, L. F., X. G. Sun, and X.-Q. Yang, 2019: The asymmetric atmospheric response to the midlatitude North Pacific SST anomalies. J. Geophys. Res.: Atmos., 124, 9222−9240,
Tao, L. F., X.-Q. Yang, J. B. Fang, and X. G. Sun, 2020: PDO-related wintertime atmospheric anomalies over the midlatitude North Pacific: Local versus remote SST forcing. J. Climate, 33, 6989−7010,
Wang, F. Y., Z. Y. Liu, and M. Notaro, 2013: Extracting the dominant SST modes impacting North America's observed climate. J. Climate, 26, 5434−5452,
Wen, N., Z. Liu, and Q. Liu, 2010: Observed atmospheric responses to global SST variability modes: A unified assessment using GEFA. J. Climate,, 23, 1739−1759,
Wen, N., Z. Y. Liu, and Y. H. Liu, 2015: Direct impact of El Niño on East Asian summer precipitation in the observation. Climate Dyn., 44, 2979−2987,
Yao, Y., Z. Zhong, X.-Q. Yang, and X. G. Huang, 2020: Future changes in the impact of North Pacific midlatitude oceanic frontal intensity on the wintertime storm track in CMIP5 models. J. Meteor. Res., 34, 1199−1213,
Yu, P. L., L. F. Zhang, Y. C. Zhang, and B. Deng, 2016: Interdecadal change of winter SST variability in the Kuroshio Extension region and its linkage with Aleutian atmospheric low pressure system. Acta Oceanologica Sinica, 35, 24−37,
Yu, P. L., C. Zhang, L. F. Zhang, X. Chen, Q. J. Zhong, M. H. Yang, and X. Li, 2020: An index for depicting the long-term variability of mesoscale eddy activity over the Kuroshio Extension region. Atmosphere, 11, 792,
Yuan, L., and Z. N. Xiao, 2017: The variability of the oceanic front in Kuroshio Extension and its relationship with the Pacific storm track in winter. Chinese Journal of Atmospheric Sciences, 41, 1141−1155. (in Chinese with English abstract)
Zhang, C., H. L. Liu, C. Y. Li, and P. F. Lin, 2019: Impacts of mesoscale sea surface temperature anomalies on the meridional shift of North Pacific storm track. International Journal of Climatology, 39, 5124−5139,
Zhang, C., H. L. Liu, J. B. Xie, P. F. Lin, C. Y. Li, Q. Yang, and J. Song, 2020a: North Pacific storm track response to the mesoscale SST in a global high-resolution atmospheric model. Climate Dyn., 55, 1597−1611,
Zhang, R., J. B. Fang, and X.-Q. Yang, 2020b: What kinds of atmospheric anomalies drive wintertime North Pacific basin-scale subtropical oceanic front intensity variation? J. Climate, 33, 7011−7026,
Zhou, G. D., and X. H. Cheng, 2022: Impacts of oceanic fronts and eddies in the Kuroshio-Oyashio Extension region on the atmospheric general circulation and storm track. Adv. Atmos. Sci., 39, 22−54,
Zhu, W. J., and Y. Li, 2010: Inter-decadal variation characteristics of winter North Pacific storm tracks and its possible influencing mechanism. Acta Meteorologica Sinica, 68, 477−486, (in Chinese with English abstract