Bai, L. N., J. Tang, R. Guo, S. Zhang, and K. Y. Liu, 2022: Quantifying interagency differences in intensity estimations of Super Typhoon Lekima (2019). Frontiers of Earth Science, 16, 5−16, https://doi.org/10.1007/s11707-020-0866-5.
Brand, S., 1970: Interaction of binary tropical cyclones of the Western North Pacific Ocean. J. Appl. Meteorol., 9(3), 433−441, https://doi.org/10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2.
Chen, G. M., M. Q. Yang, X. P. Zhang, L. N. Bai, R. J. Wan, and Q. Cao, 2022: Verification on forecasts of typhoons over western North Pacific and South China Sea in 2020. Meteorological Monthly, 48(4), 516−525, https://doi.org/10.7519/j.issn.1000-0526.2022.022101. (in Chinese with English abstract
Chen, L. S., and Y. H. Ding, 1979: An Introduction to the Western Pacific Typhoon. Science Press, 491 pp. (in Chinese)
Chen, L. S., Y. Li, and Z. Q. Cheng, 2010: An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv. Atmos. Sci., 27, 967−976, https://doi.org/10.1007/s00376-010-8171-y.
Chen, L. S., Y. H. Duan, L. L. Song, and Y. L. Xu, 2012: Typhoon Forecast and Disaster. China Meteorological Press, 370 pp. (in Chinese)
Dare, R. A., and J. L. McBride, 2011: Sea surface temperature response to tropical cyclones. Mon. Wea. Rev., 139(12), 3798−3808, https://doi.org/10.1175/MWR-D-10-05019.1.
DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving. Bull. Amer. Meteor. Soc., 95(3), 387−398, https://doi.org/10.1175/BAMS-D-12-00240.1.
DeMaria, M., J. L. Franklin, M. J. Onderlinde, and J. Kaplan, 2021: Operational forecasting of tropical cyclone rapid intensification at the national hurricane center. Atmosphere, 12(6), 683, https://doi.org/10.3390/atmos12060683.
Duan, Y. H., L. S. Chen, J. Y. Liang, Y. Wang, L. G. Wu, X. P. Cui, L. M. Ma, and Q. Q. Li, 2014: Research progress in the unusual variations of typhoons before and after landfalling. Acta Meteorologica Sinica, 72, 969−986, https://doi.org/10.11676/qxxb2014.085. (in Chinese with English abstract
Duan, Y. H., and Coauthors, 2019: Landfalling tropical cyclone research project (LTCRP) in China. Bull. Amer. Meteor. Soc., 100(12), ES447−ES472, https://doi.org/10.1175/BAMS-D-18-0241.1.
Elsberry, L. E., L.-S. Chen, J. Davidson, R. Rogers, Y. Q. Wang, and L. G. Wu, 2013: Advances in understanding and forecasting rapidly changing phenomena in tropical cyclones. Tropical Cyclone Research and Review, 2, 13−24, https://doi.org/10.6057/2013TCRR01.02.
Emanuel, K., 2018: 100 Years of progress in tropical cyclone research. Meteor. Monogr., 59(1), 15.1−15.68, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.
Evans, J. L., and R. E. Hart, 2003: Objective indicators of the onset and completion of ET for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909−925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.
Fang, X. H., and Coauthors, 2023: Will the historic southeasterly wind over the equatorial Pacific in March 2022 trigger a third-year La Niña event. Adv. Atmos. Sci., 40(1), 6−13, https://doi.org/10.1007/s00376-022-2147-6.
Fei, R., J. Xu, Y. Q. Wang, and C. Yang, 2020: Factors affecting the weakening rate of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 148(9), 3693−3712, https://doi.org/10.1175/MWR-D-19-0356.1.
Fujiwhara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287−292, https://doi.org/10.1002/qj.49704720010.
Fujiwhara, S., 1923: On the growth and decay of vortical systems. Quart. J. Roy. Meteor. Soc., 49, 75−104, https://doi.org/10.1002/qj.49704920602.
Galarneau, T. J., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141(2), 405−430, https://doi.org/10.1175/MWR-D-12-00071.1.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2006: GB/T 19201-2006 Grade of Tropical Cyclones. Standards Press of China. (in Chinese)
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96(10), 669−700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.
Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585−616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.
Hart, R. E., J. L. Evans, and C. Evans, 2006: Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution. Mon. Wea. Rev., 134, 553−578, https://doi.org/10.1175/MWR3082.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999−2049, https://doi.org/10.1002/qj.3803.
Jaimes, B., L. K. Shay, and E. W.Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143(1), 111−131, https://doi.org/10.1175/MWR-D-13-00277.1.
Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18(6), 1093−1108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.
Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89(4), 309−325, https://doi.org/10.2151/jmsj.2011-402.
Lander, M., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observations. Quart. J. Roy. Meteor. Soc., 119(514), 1347−1361, https://doi.org/10.1002/qj.49711951406.
Lei, X. T., 2020: Overview of the development history of China's typhoon research and operational work in the past century. Science China Earth Sciences, 63, 362−383, https://doi.org/10.1007/s11430-018-9379-8.
Lin, I.-I., and Coauthors, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40(9), 1878−1882, https://doi.org/10.1002/grl.50091.
Ma, Z. H., J. F. Fei, and X. G. Huang, 2019: A definition of rapid weakening for tropical cyclones over the western North Pacific. Geophys. Res. Lett., 46(20), 11 471−11 478, https://doi.org/10.1029/2019GL085090.
Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical-cyclone intensification. Australian Meteorological and Oceanographic Journal, 64, 37−66, https://doi.org/10.22499/2.6401.005.
Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24(2), 395−419, https://doi.org/10.1175/2008WAF2222128.1.
Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20(22), 5473−5496, https://doi.org/10.1175/2007JCLI1824.1.
Rogers, R., and Coauthors, 2013: NOAA's hurricane intensity forecasting experiment: A progress report. Bull. Amer. Meteor. Soc., 94(6), 859−882, https://doi.org/10.1175/BAMS-D-12-00089.1.
Shanghai Typhoon Institute, China Meteorological Administration, 2017: Climatological Atlas of Tropical Cyclones over the Western North Pacific (1981−2010). Science Press, 200 pp. (in Chinese)
Shi, W. L., J. F. Fei, X. G. Huang, X. P. Cheng, J. L. Ding, and Y. Q. He, 2014: A numerical study on the combined effect of Midlatitude and low-latitude systems on the abrupt track deflection of typhoon Megi (2010). Mon. Wea. Rev., 142(7), 2483−2501, https://doi.org/10.1175/MWR-D-13-00283.1.
Song, J. J., J. J. Han, and Y. Wang, 2011: Cyclone phase space characteristics of the extratropical transitioning tropical cyclones over the western North Pacific. Acta Meteorologica Sinica, 25, 78−90, https://doi.org/10.1007/s13351-011-0006-y.
Tan, Z. M., L. L. Lei, Y. Q. Wang, Y. L. Xu, and Y. Zhang, 2022: Typhoon track, intensity, and structure: From theory to prediction. Adv. Atmos. Sci., 39, 1789−1799, https://doi.org/10.1007/s00376-022-2212-1.
Velden, C., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87(9), 1195−1210, https://doi.org/10.1175/BAMS-87-9-1195.
Wada, A., and J. C. L. Chan, 2008: Relationship between typhoon activity and upper ocean heat content. Geophys. Res. Lett., 35, L17603, https://doi.org/10.1029/2008GL035129.
Wang, Q., 2018: Forecast performance and study on RI process of typhoons Rammasun (1409) and Hato (1713). TECO of Typhoon Committee 50th Session, Ha Noi, ESCAP/WMO, 36 pp.
Wang, Q., Q. Q. Li, and G. Fu, 2012: Determining the extratropical transition onset and completion times of typhoons Mindulle (2004) and Yagi (2006) using four methods. Wea. Forecasting, 27(6), 1394−1412, https://doi.org/10.1175/WAF-D-11-00148.1.
Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes-A review. Meteorol. Atmos. Phys., 87, 257−278, https://doi.org/10.1007/s00703-003-0055-6.
Wang, Y. Q., and H. Wang, 2013: The inner-core size increase of Typhoon Megi (2010) during its rapid intensification phase. Tropical Cyclone Research and Review, 2, 65−80, https://doi.org/10.6057/2013TCRR02.01.
Wang, Y. Q., J. Xu, and Z. M. Tan, 2022: Contribution of dissipative heating to the intensity dependence of tropical cyclone intensification. J. Atmos. Sci., 79, 2169−2180, https://doi.org/10.1175/JAS-D-22-0012.1.
Wu, L. G., H. K. Zhao, C. Wang, J. Cao, and J. Liang, 2022: Understanding of the effect of climate change on tropical cyclone intensity: A review. Adv. Atmos. Sci., 39(2), 205−221, https://doi.org/10.1007/s00376-021-1026-x.
Zhao, D. J., H. X. Xu, Y. B. Yu, and L. S. Chen, 2022a: Identification of synoptic patterns for extreme rainfall events associated with landfalling typhoons in China during 1960−2020. Advances in Climate Change Research, 13(5), 651−665, https://doi.org/10.1016/j.accre.2022.07.002.
Zhao, D. J., W. H. Gao, H. X. Xu, Y. B. Yu, and L. S. Chen, 2022b: A modeling study of cloud physical properties of extreme and non-extreme precipitation in landfalling typhoons over China. Atmospheric Research, 277, 106311, https://doi.org/10.1016/j.atmosres.2022.106311.