Bai, L. N., J. Tang, R. Guo, S. Zhang, and K. Y. Liu, 2022: Quantifying interagency differences in intensity estimations of Super Typhoon Lekima (2019). Frontiers of Earth Science, 16, 5−16,
Brand, S., 1970: Interaction of binary tropical cyclones of the Western North Pacific Ocean. J. Appl. Meteorol., 9(3), 433−441,<0433:IOBTCO>2.0.CO;2.
Chen, G. M., M. Q. Yang, X. P. Zhang, L. N. Bai, R. J. Wan, and Q. Cao, 2022: Verification on forecasts of typhoons over western North Pacific and South China Sea in 2020. Meteorological Monthly, 48(4), 516−525, (in Chinese with English abstract
Chen, L. S., and Y. H. Ding, 1979: An Introduction to the Western Pacific Typhoon. Science Press, 491 pp. (in Chinese)
Chen, L. S., Y. Li, and Z. Q. Cheng, 2010: An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv. Atmos. Sci., 27, 967−976,
Chen, L. S., Y. H. Duan, L. L. Song, and Y. L. Xu, 2012: Typhoon Forecast and Disaster. China Meteorological Press, 370 pp. (in Chinese)
Dare, R. A., and J. L. McBride, 2011: Sea surface temperature response to tropical cyclones. Mon. Wea. Rev., 139(12), 3798−3808,
DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving. Bull. Amer. Meteor. Soc., 95(3), 387−398,
DeMaria, M., J. L. Franklin, M. J. Onderlinde, and J. Kaplan, 2021: Operational forecasting of tropical cyclone rapid intensification at the national hurricane center. Atmosphere, 12(6), 683,
Duan, Y. H., L. S. Chen, J. Y. Liang, Y. Wang, L. G. Wu, X. P. Cui, L. M. Ma, and Q. Q. Li, 2014: Research progress in the unusual variations of typhoons before and after landfalling. Acta Meteorologica Sinica, 72, 969−986, (in Chinese with English abstract
Duan, Y. H., and Coauthors, 2019: Landfalling tropical cyclone research project (LTCRP) in China. Bull. Amer. Meteor. Soc., 100(12), ES447−ES472,
Elsberry, L. E., L.-S. Chen, J. Davidson, R. Rogers, Y. Q. Wang, and L. G. Wu, 2013: Advances in understanding and forecasting rapidly changing phenomena in tropical cyclones. Tropical Cyclone Research and Review, 2, 13−24,
Emanuel, K., 2018: 100 Years of progress in tropical cyclone research. Meteor. Monogr., 59(1), 15.1−15.68,
Evans, J. L., and R. E. Hart, 2003: Objective indicators of the onset and completion of ET for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909−925,<0909:OIOTLC>2.0.CO;2.
Fang, X. H., and Coauthors, 2023: Will the historic southeasterly wind over the equatorial Pacific in March 2022 trigger a third-year La Niña event. Adv. Atmos. Sci., 40(1), 6−13,
Fei, R., J. Xu, Y. Q. Wang, and C. Yang, 2020: Factors affecting the weakening rate of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 148(9), 3693−3712,
Fujiwhara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287−292,
Fujiwhara, S., 1923: On the growth and decay of vortical systems. Quart. J. Roy. Meteor. Soc., 49, 75−104,
Galarneau, T. J., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141(2), 405−430,
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2006: GB/T 19201-2006 Grade of Tropical Cyclones. Standards Press of China. (in Chinese)
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96(10), 669−700,<0669:GVOTOO>2.0.CO;2.
Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585−616,<0585:ACPSDF>2.0.CO;2.
Hart, R. E., J. L. Evans, and C. Evans, 2006: Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution. Mon. Wea. Rev., 134, 553−578,
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999−2049,
Jaimes, B., L. K. Shay, and E. W.Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143(1), 111−131,
Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18(6), 1093−1108,<1093:LCORIT>2.0.CO;2.
Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89(4), 309−325,
Lander, M., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observations. Quart. J. Roy. Meteor. Soc., 119(514), 1347−1361,
Lei, X. T., 2020: Overview of the development history of China's typhoon research and operational work in the past century. Science China Earth Sciences, 63, 362−383,
Lin, I.-I., and Coauthors, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40(9), 1878−1882,
Ma, Z. H., J. F. Fei, and X. G. Huang, 2019: A definition of rapid weakening for tropical cyclones over the western North Pacific. Geophys. Res. Lett., 46(20), 11 471−11 478,
Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical-cyclone intensification. Australian Meteorological and Oceanographic Journal, 64, 37−66,
Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24(2), 395−419,
Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20(22), 5473−5496,
Rogers, R., and Coauthors, 2013: NOAA's hurricane intensity forecasting experiment: A progress report. Bull. Amer. Meteor. Soc., 94(6), 859−882,
Shanghai Typhoon Institute, China Meteorological Administration, 2017: Climatological Atlas of Tropical Cyclones over the Western North Pacific (1981−2010). Science Press, 200 pp. (in Chinese)
Shi, W. L., J. F. Fei, X. G. Huang, X. P. Cheng, J. L. Ding, and Y. Q. He, 2014: A numerical study on the combined effect of Midlatitude and low-latitude systems on the abrupt track deflection of typhoon Megi (2010). Mon. Wea. Rev., 142(7), 2483−2501,
Song, J. J., J. J. Han, and Y. Wang, 2011: Cyclone phase space characteristics of the extratropical transitioning tropical cyclones over the western North Pacific. Acta Meteorologica Sinica, 25, 78−90,
Tan, Z. M., L. L. Lei, Y. Q. Wang, Y. L. Xu, and Y. Zhang, 2022: Typhoon track, intensity, and structure: From theory to prediction. Adv. Atmos. Sci., 39, 1789−1799,
Velden, C., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87(9), 1195−1210,
Wada, A., and J. C. L. Chan, 2008: Relationship between typhoon activity and upper ocean heat content. Geophys. Res. Lett., 35, L17603,
Wang, Q., 2018: Forecast performance and study on RI process of typhoons Rammasun (1409) and Hato (1713). TECO of Typhoon Committee 50th Session, Ha Noi, ESCAP/WMO, 36 pp.
Wang, Q., Q. Q. Li, and G. Fu, 2012: Determining the extratropical transition onset and completion times of typhoons Mindulle (2004) and Yagi (2006) using four methods. Wea. Forecasting, 27(6), 1394−1412,
Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes-A review. Meteorol. Atmos. Phys., 87, 257−278,
Wang, Y. Q., and H. Wang, 2013: The inner-core size increase of Typhoon Megi (2010) during its rapid intensification phase. Tropical Cyclone Research and Review, 2, 65−80,
Wang, Y. Q., J. Xu, and Z. M. Tan, 2022: Contribution of dissipative heating to the intensity dependence of tropical cyclone intensification. J. Atmos. Sci., 79, 2169−2180,
Wu, L. G., H. K. Zhao, C. Wang, J. Cao, and J. Liang, 2022: Understanding of the effect of climate change on tropical cyclone intensity: A review. Adv. Atmos. Sci., 39(2), 205−221,
Zhao, D. J., H. X. Xu, Y. B. Yu, and L. S. Chen, 2022a: Identification of synoptic patterns for extreme rainfall events associated with landfalling typhoons in China during 1960−2020. Advances in Climate Change Research, 13(5), 651−665,
Zhao, D. J., W. H. Gao, H. X. Xu, Y. B. Yu, and L. S. Chen, 2022b: A modeling study of cloud physical properties of extreme and non-extreme precipitation in landfalling typhoons over China. Atmospheric Research, 277, 106311,