Advanced Search
Article Contents

Some Possible Solutions of Nonlinear Internal Inertial Gravity Wave Equations in the Atmosphere


doi: 10.1007/BF02656866

  • In this paper, the nonlinear internal inertial gravity wave equation is derived by the analysis method of phase plane and is solved by integration method. The results showed that this nonlinear equation not only has ordinary soli-tary wave solution but also has another extra-ordinary solutions, and the form of solution is related to stratification stability, wave velocity and direction of wave motion.
  • [1] Chen Jiong, Liu Shikuo, 1998: The Solitary Waves of the Barotropic Quasi-Geostrophic Model with the Large-scale Orography, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 404-411.  doi: 10.1007/s00376-998-0010-z
    [2] R. Dhar, C. Guha-Roy, D. K. Sinha, 1991: On a Class of Solitary Wave Solutions of Atmospheric Nonlinear Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 357-362.  doi: 10.1007/BF02919618
    [3] Xu Xihua, 1989: The Solitary Wave of Barotropic Atmosphere on a Sphere, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 457-466.  doi: 10.1007/BF02659079
    [4] Luo Dehai, Ji Liren, 1988: ALGEBRAIC ROSSBY SOLITARY WAVE AND BLOCKING IN THE ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 445-454.  doi: 10.1007/BF02656790
    [5] Yong. L. McHall, 1992: Nonlinear Planetary Wave Instability and Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 173-190.  doi: 10.1007/BF02657508
    [6] He Jianzhong, 1994: Nonlinear Ultra-Long Wave and Its Stability, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 91-100.  doi: 10.1007/BF02656998
    [7] Zhang Xuehong, 1985: THE SECOND ORDER APPROXIMATION TO THE NONLINEAR WAVE IN BAROTROPIC ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 167-177.  doi: 10.1007/BF03179749
    [8] ZHANG Lifeng, WANG Xingbao, ZHANG Ming, 2003: Spatial and Time Structure of a Gravity Wave in Horizontal Atmosphere of Heterogeneous Stratification, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 29-36.  doi: 10.1007/BF03342047
    [9] Zhu Xun, 1987: ON GRAVITY WAVE-MEAN FLOW INTERACTIONS IN A THREE DIMENSIONAL STRATIFIED ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 287-299.  doi: 10.1007/BF02663599
    [10] Zhang Zhenyue, 1988: TROPICAL GRAVITY-ATMOSPHERIC LONG WAVE AND THE WALKER CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 265-276.  doi: 10.1007/BF02656751
    [11] Gao Shouting, 1988: NONLINEAR ROSSBY WAVE INDUCED BY LARGE-SCALE TOPOGRAPHY, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 301-310.  doi: 10.1007/BF02656754
    [12] Tracy MOFFAT-GRIFFIN, Mike J. TAYLOR, Takuji NAKAMURA, Andrew J. KAVANAGH, J. Scott HOSKING, Andrew ORR, 2017: 3rd ANtarctic Gravity Wave Instrument Network (ANGWIN) Science Workshop, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1-3.  doi: 10.1007/s00376-016-6197-5
    [13] Lu LIU, Lingkun RAN, Shouting GAO, 2019: A Three-dimensional Wave Activity Flux of Inertia-Gravity Waves and Its Application to a Rainstorm Event, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 206-218.  doi: 10.1007/s00376-018-8018-5
    [14] Zheng Xingyu, Zeng Qingcun, Huang Ronghui, 1992: The Propagation of Inertia-Gravity Waves and Their Influence on Zonal Mean Flow Part Two: Wave Breaking and Critical Levels, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 29-36.  doi: 10.1007/BF02656927
    [15] Gao Shouting, 1991: A-B Hybrid Equation Method of Nonlinear Bifurcation in Wave-Flow Interaction, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 165-174.  doi: 10.1007/BF02658092
    [16] Xu Youfeng, 1986: THE NONLINEAR INTERACTION BETWEEN DIFFERENT WAVE COMPONENTS AND THE PROCESS OF INDEX CYCLE OF GENERAL CIRCULATION, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 478-488.  doi: 10.1007/BF02657937
    [17] H.L. Kuo, 1995: Three-dimensional Global Scale Permanent-wave Solutions of the Nonlinear Quasigeostrophic Potential Vorticity Equation and Energy Dispersion, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 387-404.  doi: 10.1007/BF02657001
    [18] Luo Dehai, 1999: Nonlinear Three-Wave Interaction among Barotropic Rossby Waves in a Large-scale Forced Barotropic Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 451-466.  doi: 10.1007/s00376-999-0023-2
    [19] Luo Dehai, 1999: Bifurcation of Nonlinear Kelvin Wave-CISK with Conditional Heating in a Truncated Spectral Model: A Possible Mechanism of 30-60-Day Osculation at the Equator, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 279-296.  doi: 10.1007/BF02973088
    [20] MING Jie, NI Yunqi, SHEN Xinyong, 2009: The Dynamical Characteristics and Wave Structure of Typhoon Rananim (2004), ADVANCES IN ATMOSPHERIC SCIENCES, 26, 523-542.  doi: 10.1007/s00376-009-0523-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1996
Manuscript revised: 10 April 1996
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Some Possible Solutions of Nonlinear Internal Inertial Gravity Wave Equations in the Atmosphere

  • 1. Chengdu Institute of Meteorology, Chengdu, 610041,Chengdu Institute of Meteorology, Chengdu, 610041

Abstract: In this paper, the nonlinear internal inertial gravity wave equation is derived by the analysis method of phase plane and is solved by integration method. The results showed that this nonlinear equation not only has ordinary soli-tary wave solution but also has another extra-ordinary solutions, and the form of solution is related to stratification stability, wave velocity and direction of wave motion.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return