Advanced Search

Volume 9 Issue 1

Jan.  1992

Article Contents

A Numerical Study on Forecasting the Henan Extraordinarily Heavy Rainfall Event in August 1975


doi: 10.1007/BF02656930

  • This study is essentially an experiment on the control experiment in the August 1975 catastrophe which was the heaviest rainfall in mainland China with a maximum 24-h rainfall of 1060.3 mm, and it significantly demonstrates that the limited area model can still skillfully give reasonable results even only the conventional data are available. For such a heavy rainfall event, a grid length of 90 km is too large while 45 km seems acceptable. Under these two grid sizes, the cumulus parameterization scheme is evidently superior to the explicit scheme since it restricts instabili-ties such as CISK to limited extent, The high resolution scheme for the boundary treatment does not improve fore-casts significantly.The experiments also revealed some interesting phenomena such as the forecast rainfall being too small while af-fecting synoptic system so deep as compared with observations. Another example is the severe deformation of synoptic systems both in initial conditions and forecast fields in the presence of complicated topography. Besides, the fixed boundary condition utilized in the experiments along with current domain coverage set some limitations to the model performances.
  • [1] Lei YIN, Fan PING, Jiahua MAO, Shuanggen JIN, 2023: Analysis on Precipitation Efficiency of the “21.7” Henan Extremely Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 374-392.  doi: 10.1007/s00376-022-2054-x
    [2] Yuhan LUO, Yu DU, 2023: The Roles of Low-level Jets in “21·7” Henan Extremely Persistent Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 350-373.  doi: 10.1007/s00376-022-2026-1
    [3] Ming XUE, 2023: Preface to the Special Collection on the July 2021 Zhengzhou, Henan Extreme Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 335-336.  doi: 10.1007/s00376-022-2018-1
    [4] Rui WANG, Yiting ZHU, Fengxue QIAO, Xin-Zhong LIANG, Han ZHANG, Yang DING, 2021: High-resolution Simulation of an Extreme Heavy Rainfall Event in Shanghai Using the Weather Research and Forecasting Model: Sensitivity to Planetary Boundary Layer Parameterization, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 98-115.  doi: 10.1007/s00376-020-9255-y
    [5] Lan XU, Wei CHENG, Zhongren DENG, Juanjuan LIU, Bin WANG, Bin LU, Shudong WANG, Li DONG, 2023: Assimilation of the FY-4A AGRI Clear-Sky Radiance Data in a Regional Numerical Model and Its Impact on the Forecast of the “21·7” Henan Extremely Persistent Heavy Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 920-936.  doi: 10.1007/s00376-022-1380-3
    [6] CHU Ke-Kuan, TAN Zhe-Min, 2010: Mesoscale Moist Adjoint Sensitivity Study of a Mei-yu Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1415-1424.  doi: 10.1007/s00376-010-9213-1
    [7] Xiuping YAO, Ruoying LI, Xiaohong BAO, Qiaohua LIU, 2024: Diagnosis of the Kinetic Energy of the “21·7” Extreme Torrential Rainfall Event in Henan Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 73-83.  doi: 10.1007/s00376-023-3025-6
    [8] Jin Long, LuoYing, Lin Zhenshan, 1997: Comparison of Long-Term Forecasting of June-August Rainfall over Changjiang-Huaihe Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 87-92.  doi: 10.1007/s00376-997-0047-4
    [9] Rudi XIA, Yali LUO, Da-Lin ZHANG, Mingxin LI, Xinghua BAO, Jisong SUN, 2021: On the Diurnal Cycle of Heavy Rainfall over the Sichuan Basin during 10–18 August 2020, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 2183-2200.  doi: 10.1007/s00376-021-1118-7
    [10] LOU Xiaofeng, HU Zhijin, SHI Yueqin, WANG Pengyun, ZHOU Xiuji, 2003: Numerical Simulations of a Heavy Rainfall Case in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 128-138.  doi: 10.1007/BF03342057
    [11] Yan Shaojin, Peng Yongqing, Guo guang, 1995: Neuroid BP-type Model Applied to the Study of Monthly Rainfall Forecasting, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 335-342.  doi: 10.1007/BF02656982
    [12] GAO Shanhong, LIN Hang, SHEN Biao, FU Gang, 2007: A Heavy Sea Fog Event over the Yellow Sea in March 2005: Analysis and Numerical Modeling, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 65-81.  doi: 10.1007/s00376-007-0065-2
    [13] HOU Tuanjie, Fanyou KONG, CHEN Xunlai, LEI Hengchi, HU Zhaoxia, 2015: Evaluation of Radar and Automatic Weather Station Data Assimilation for a Heavy Rainfall Event in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 967-978.  doi: 10.1007/s00376-014-4155-7
    [14] Yang ZHAO, Xiangde XU, Bin CHEN, Yinjun Wang, 2016: The Upstream "Strong Signals" of the Water Vapor Transport over the Tibetan Plateau during a Heavy Rainfall Event in the Yangtze River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1343-1350.  doi: 10.1007/s00376-016-6118-7
    [15] ZHAO Sixiong, BEI Naifang, SUN Jianhua, 2007: Mesoscale Analysis of a Heavy Rainfall Event over Hong Kong During a Pre-rainy Season in South China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 555-572.  doi: 10.1007/s00376-007-0555-2
    [16] Shou Shaowen, Liu Yaohui, 1999: Study on Moist Potential Vorticity and Symmetric Instability during a Heavy Rain Event Occurred in the Jiang-Huai Valleys, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 314-321.  doi: 10.1007/BF02973091
    [17] CHU Kekuan, TAN Zhemin, Ming XUE, 2007: Impact of 4DVAR Assimilation of Rainfall Data on the Simulation of Mesoscale Precipitation Systems in a Mei-yu Heavy Rainfall Event, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 281-300.  doi: 10.1007/s00376-007-0281-9
    [18] ZHOU Yushu, CUI Chunguang, 2011: A Modeling Study of Surface Rainfall Processes Associated with a Torrential Rainfall Event over Hubei, China, during July 2007, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1459-1470.  doi: 10.1007/s00376-010-0119-8
    [19] Wenhua Gao, Chengyin Li, Lanzhi Tang, 2024: A numerical study of the impacts of hydrometeor processes on the “21.7” extreme rainfall in Zhengzhou, China, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-024-3365-x
    [20] XIA Zhiye, CHEN Hongbin, XU Lisheng, WANG Yongqian, 2015: Extended Range (10-30 Days) Heavy Rain Forecasting Study Based on a Nonlinear Cross-Prediction Error Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1583-1591.  doi: 10.1007/s00376-015-4252-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1992
Manuscript revised: 10 January 1992
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Numerical Study on Forecasting the Henan Extraordinarily Heavy Rainfall Event in August 1975

  • 1. Institute of Atmospheric Physics, Academia Sinica,Academy of Meteorological Science, State Meteorological Administration,Academy of Meteorological Science, State Meteorological Administration

Abstract: This study is essentially an experiment on the control experiment in the August 1975 catastrophe which was the heaviest rainfall in mainland China with a maximum 24-h rainfall of 1060.3 mm, and it significantly demonstrates that the limited area model can still skillfully give reasonable results even only the conventional data are available. For such a heavy rainfall event, a grid length of 90 km is too large while 45 km seems acceptable. Under these two grid sizes, the cumulus parameterization scheme is evidently superior to the explicit scheme since it restricts instabili-ties such as CISK to limited extent, The high resolution scheme for the boundary treatment does not improve fore-casts significantly.The experiments also revealed some interesting phenomena such as the forecast rainfall being too small while af-fecting synoptic system so deep as compared with observations. Another example is the severe deformation of synoptic systems both in initial conditions and forecast fields in the presence of complicated topography. Besides, the fixed boundary condition utilized in the experiments along with current domain coverage set some limitations to the model performances.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return