Advanced Search
Article Contents

Three-dimensional Global Scale Permanent-wave Solutions of the Nonlinear Quasigeostrophic Potential Vorticity Equation and Energy Dispersion


doi: 10.1007/BF02657001

  • The three-dimensional nonlinear quasi-geostrophic potential vorticity equation is reduced to a linear form in the stream function in spherical coordinates for the permanent wave solutions consisting of zonal wavenumbers from 0 to n and rn vertical components with a given degree n. This equation is solved by treating the coefficient of the Coriolis parameter square in the equation as the eigenvalue both for sinusoidal and hyperbolic variations in vertical direction. It is found that these solutions can represent the observed long term flow patterns at the surface and aloft over the globe closely. In addition, the sinusoidal vertical solutions with large eigenvalue G are trapped in low latitude, and the scales of these trapped modes are longer than 10 deg. lat. even for the top layer of the ocean and hence they are much larger than that given by the equatorial β-plane solutions. Therefore such baroclinic disturb-ances in the ocean can easily interact with those in the atmosphere.Solutions of the shallow water potential vorticity equation are treated in a similar manner but with the effective depth H = RT / g taken as limited within a small range for the atmosphere.The propagation of the flow energy of the wave packet consisting of more than one degree is found to be along the great circle around the globe both for barotropic and for baroclinic flows in the atmosphere.
  • [1] Jianhua LU, Tapio SCHNEIDER, 2017: Evolving Perspectives on Abrupt Seasonal Changes of the General Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1185-1194.  doi: 10.1007/s00376-017-7068-4
    [2] XUN Xueyi, HU Zeyong, MA Yaoming, 2012: The Dynamic Plateau Monsoon Index and Its Association with General Circulation Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1249-1263.  doi: 10.1007/s00376-012-1125-9
    [3] Zhang Xin, Wang Bin, Ji Zhongzhen, 2001: Performance of a Parallel Finite Difference Atmospheric General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1175-1184.  doi: 10.1007/s00376-001-0031-3
    [4] XU Yongfu, LI Yangchun, and CHU Min, 2013: A Global Ocean Biogeochemistry General Circulation Model and its Simulations, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 922-939.  doi: 10.1007/s00376-012-2162-0
    [5] Zhang Ronghua, Zeng Qingcun, Zhou Guangqing, Liang Xinzhong, 1995: A Coupled General Circulation Model for the Tropical Pacific Ocean and Global Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 127-142.  doi: 10.1007/BF02656827
    [6] YU Yongqiang, ZHANG Xuehong, GUO Yufu, 2004: Global Coupled Ocean-Atmosphere General Circulation Models in LASG/IAP, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 444-455.  doi: 10.1007/BF02915571
    [7] M. Sankar-Rao, V. N. Lykossov, E. M. Volodin, A. E. Nikitin, A. I. Degtiarev, Kusuma G. Rao, 1991: Relationships between the Global General Circulation and the Indian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 137-148.  doi: 10.1007/BF02658090
    [8] Boyin HUANG, Vikram M. MEHTA, 2010: Influences of Freshwater from Major Rivers on Global Ocean Circulation and Temperatures in the MIT Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 455-468.  doi: 10.1007/s00376-009-9022-6
    [9] Tim LI, ZHANG Lei, Hiroyuki MURAKAMI, 2015: Strengthening of the Walker Circulation under Global Warming in an Aqua-Planet General Circulation Model Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1473-1480.  doi: 10.1007/s00376-015-5033-7
    [10] Huang Ronghui, Zeng Qingcun, Yang Dasheng, 1986: THE ADVANCES IN THE STUDIES ON GENERAL CIRCULATION AND LARGE-SCALE DYNAMICS, AND THEIR PROSPECTS FOR THE YEAR OF 2000, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 263-276.  doi: 10.1007/BF02678648
    [11] Huang Ruixin, Jin Xiangze, Zhang Xuehong, 2001: An Oceanic General Circulation Model in Pressure Coordinates, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1-22.  doi: 10.1007/s00376-001-0001-9
    [12] S. PANCHEV, T. SPASSOVA, 2005: Simple General Atmospheric Circulation and Climate Models with Memory, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 765-769.  doi: 10.1007/BF02918720
    [13] Zhang Xuehong, Liang Xinzhong, 1989: A Numerical World Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 44-61.  doi: 10.1007/BF02656917
    [14] REN Rongcai, WU Guoxiong, Ming CAI, YU Jingjing, 2009: Winter Season Stratospheric Circulation in the SAMIL/LASG General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 451-464.  doi: 10.1007/s00376-009-0451-z
    [15] WEN Xinyu, ZHOU Tianjun, WANG Shaowu, WANG Bin, WAN Hui, LI Jian, 2007: Performance of a Reconfigured Atmospheric General Circulation Model at Low Resolution, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 712-728.  doi: 10.1007/s00376-007-0712-7
    [16] LIU Hailong, ZHANG Xuehong, LI Wei, YU Yongqiang, YU Rucong, 2004: An Eddy-Permitting Oceanic General Circulation Model and Its Preliminary Evaluation, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 675-690.  doi: 10.1007/BF02916365
    [17] Zhou Guangqing, Zeng Qingcun, 2001: Predictions of ENSO with a Coupled Atmosphere-Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 587-603.  doi: 10.1007/s00376-001-0047-8
    [18] Yu Yongqiang, Yu Rucong, Zhang Xuehong, Liu Hailong, 2002: A Flexible Coupled Ocean-Atmosphere General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 169-190.  doi: 10.1007/s00376-002-0042-8
    [19] YANG Jing, BAO Qing, WANG Xiaocong, ZHOU Tianjun, 2012: The Tropical Intraseasonal Oscillation in SAMIL Coupled and Uncoupled General Circulation Models, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 529-543.  doi: 10.1007/s00376-011-1087-3
    [20] Wu Guoxiong, Liu Hui, Zhao Yucheng, Li Weiping, 1996: A Nine-layer Atmospheric General Circulation Model and Its Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 1-18.  doi: 10.1007/BF02657024

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1995
Manuscript revised: 10 October 1995
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Three-dimensional Global Scale Permanent-wave Solutions of the Nonlinear Quasigeostrophic Potential Vorticity Equation and Energy Dispersion

  • 1. Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637

Abstract: The three-dimensional nonlinear quasi-geostrophic potential vorticity equation is reduced to a linear form in the stream function in spherical coordinates for the permanent wave solutions consisting of zonal wavenumbers from 0 to n and rn vertical components with a given degree n. This equation is solved by treating the coefficient of the Coriolis parameter square in the equation as the eigenvalue both for sinusoidal and hyperbolic variations in vertical direction. It is found that these solutions can represent the observed long term flow patterns at the surface and aloft over the globe closely. In addition, the sinusoidal vertical solutions with large eigenvalue G are trapped in low latitude, and the scales of these trapped modes are longer than 10 deg. lat. even for the top layer of the ocean and hence they are much larger than that given by the equatorial β-plane solutions. Therefore such baroclinic disturb-ances in the ocean can easily interact with those in the atmosphere.Solutions of the shallow water potential vorticity equation are treated in a similar manner but with the effective depth H = RT / g taken as limited within a small range for the atmosphere.The propagation of the flow energy of the wave packet consisting of more than one degree is found to be along the great circle around the globe both for barotropic and for baroclinic flows in the atmosphere.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return