Advanced Search
Article Contents

Baroclinic Instability in the Generalized Phillips’ Model Part I: Two-layer Model


doi: 10.1007/BF02657026

  • By employing Arnol’d’s method (energy-Casimir), this paper has studied the nonlinear stability of the two-layer generalized Phillips’ model for which the top and bottom surfaces are either rigid or free, and obtained some nonlinear stability criteria. In addition, some linear stability criteria are obtained by normal mode method. The re-sults reveal the influences of the free surface parameter on the stability of atmospheric and oceanic motions
  • [1] JIANG Zhina, 2006: Applications of Conditional Nonlinear Optimal Perturbation to the Study of the Stability and Sensitivity of the Jovian Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 775-783.  doi: 10.1007/s00376-006-0775-x
    [2] He Jianzhong, 1994: Nonlinear Ultra-Long Wave and Its Stability, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 91-100.  doi: 10.1007/BF02656998
    [3] DIAO Yina, FENG Guolin, LIU Shida, LIU Shikuo, LUO Dehai, HUANG Sixun, LU Weisong, CHOU Jifan, 2004: Review of the Study of Nonlinear Atmospheric Dynamics in China (1999-2002), ADVANCES IN ATMOSPHERIC SCIENCES, 21, 399-406.  doi: 10.1007/BF02915567
    [4] DING Ruiqiang, FENG Guolin, LIU Shida, LIU Shikuo, HUANG Sixun, FU Zuntao, 2007: Nonlinear Atmospheric and Climate Dynamics in China (2003--2006): A Review, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1077-1085.  doi: 10.1007/s00376-007-1077-7
    [5] Ji Zhongzhen, Lin Wantao, Yang Xiaozhong, 2001: Problems of Nonlinear Computational Instability in Evolution Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 397-403.  doi: 10.1007/BF02919318
    [6] LIN Pengfei, YU Yongqiang, LIU Hailong, 2013: Long-term Stability and Oceanic Mean State Simulated by the Coupled Model FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 175-192.  doi: 10.1007/s00376-012-2042-7
    [7] Li Chongyin, Liao Qinghai, 1996: Behaviour of Coupled Modes in a Simple Nonlinear Air-Sea Interaction Model, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 183-195.  doi: 10.1007/BF02656861
    [8] Zhaoxia PU, Joshua HACKER, 2009: Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 373-380.  doi: 10.1007/s00376-009-0373-9
    [9] LU Weisong, SHAO Haiyan, 2003: Generalized Nonlinear Subcritical Symmetric Instability, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 623-630.  doi: 10.1007/BF02915505
    [10] Shen Xinyong, Ni Yunqi, Ding Yihui, 2002: On Problem of Nonlinear Symmetric Instability in Zonal Shear Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 350-364.  doi: 10.1007/s00376-002-0027-7
    [11] Brian HOSKINS, 2015: Potential Vorticity and the PV Perspective, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 2-9.  doi: 10.1007/s00376-014-0007-8
    [12] Li Liming, Huang Feng, Chi Dongyan, Liu Shikuo, Wang Zhanggui, 2002: Thermal Effects of the Tibetan Plateau on Rossby Waves from the Diabatic Quasi-Geostrophic Equations of Motion, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 901-913.  doi: 10.1007/s00376-002-0054-4
    [13] Mu Mu, Xiang Jie, 1998: On the Evolution of Finite-amplitude Disturbance to the Barotropic and Baroclinic Quasigeostrophic Flows, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 113-123.  doi: 10.1007/s00376-998-0023-7
    [14] Li Yang, Mu Mu, Wu Yonghui, 2000: A Study on the Nonlinear Stability of Fronts in the Ocean on a Sloping Continental Shelf, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 275-284.  doi: 10.1007/s00376-000-0009-6
    [15] Lin Wantao, Ji Zhongzhen, Wang Bin, 2001: Computational Stability of the Explicit Difference Schemes of the Forced Dissipative Nonlinear Evolution Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 413-417.  doi: 10.1007/BF02919320
    [16] LIU Yongming, CAI Jingjing, 2006: On Nonlinear Stability Theorems of 3D Quasi-geostrophic Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 809-814.  doi: 10.1007/s00376-006-0809-4
    [17] Mu Mu, Guo Huan, Wang Jiafeng, LiYong, 2000: The Impact of Nonlinear Stability and Instability on the Validity of the Tangent Linear Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 375-390.  doi: 10.1007/s00376-000-0030-9
    [18] Liu Yongming, 1999: Nonlinear Stability of Zonally Symmetric Quasi-geostrophic Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 107-118.  doi: 10.1007/s00376-999-0007-2
    [19] Mu Mu, Wu Yonghui, Tang Mozhi, Liu Haiyan, 1999: Nonlinear Stability Analysis of the Zonal Flows at Middle and High Latitudes, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 569-580.  doi: 10.1007/s00376-999-0032-1
    [20] Li Yang, Mu Mu, 1996: On the Nonlinear Stability of Three-Dimensional Quasigeostrophic Motions in Spherical Geometry, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 203-216.  doi: 10.1007/BF02656863

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1996
Manuscript revised: 10 January 1996
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Baroclinic Instability in the Generalized Phillips’ Model Part I: Two-layer Model

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,

Abstract: By employing Arnol’d’s method (energy-Casimir), this paper has studied the nonlinear stability of the two-layer generalized Phillips’ model for which the top and bottom surfaces are either rigid or free, and obtained some nonlinear stability criteria. In addition, some linear stability criteria are obtained by normal mode method. The re-sults reveal the influences of the free surface parameter on the stability of atmospheric and oceanic motions

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return