Advanced Search

Volume 9 Issue 2

Mar.  1992

Article Contents

Transport of Water Vapor over North China during the Drought Period in Summer of 1980


doi: 10.1007/BF02657511

  • The features of water vapor transport, such as temporal evolution, vertical structure and spatial pattern, over North China during the prolonged drought in the summer of 1980 have been analyzed through computation of water vapor flux based on the once daily ECMWF grid-point data at 12GMT. The results indicate that it is unlikely that the characteristics of the atmospheric mass divergence, ascending motion and stratification stability in North China were completely opposite to those in the Yangtze River Valley, where the heavy flood occurred in the summer of 1980. It is major differences that the strong ascending motion and significant water vapor convergence overlap fairly well each other in the vertical levels in the Yangtze River Valley, while the maximum ascending motion is accompa-nied by water vapor divergence or weak water vapor convergence in North China. This vertical structure in North China results in insufficient water vapor supply and, therefore, little condensation and precipitation in the middle and upper atmosphere were produced. Additionally, a mode of monthly-scale low frequency oscillation can be found in water vapor flux, which is in correspondence to the fluctuation period of rainfall.
  • [1] XU Xiangde, MIAO Qiuju, WANG Jizhi, ZHANG Xuejin, 2003: The Water Vapor Transport Model at the Regional Boundary during the Meiyu Period, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 333-342.  doi: 10.1007/BF02690791
    [2] Zhang Renhe, 2001: Relations of Water Vapor Transport from Indian Monsoon with That over East Asia and the Summer Rainfall in China, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1005-1017.
    [3] SUN Bo, ZHU Yali, WANG Huijun, 2011: The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1039-1048.  doi: 10.1007/s00376-010-0093-1
    [4] Yang ZHAO, Xiangde XU, Bin CHEN, Yinjun Wang, 2016: The Upstream "Strong Signals" of the Water Vapor Transport over the Tibetan Plateau during a Heavy Rainfall Event in the Yangtze River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1343-1350.  doi: 10.1007/s00376-016-6118-7
    [5] SUN Li, SHEN Baizhu, SUI Bo, 2010: A Study on Water Vapor Transport and Budget of Heavy Rain in Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1399-1414.  doi: 10.1007/s00376-010-9087-2
    [6] Yi Lan, 1995: Characteristics of the Mean Water Vapor Transport over Monsoon Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 195-206.  doi: 10.1007/BF02656832
    [7] LIANG Feng, TAO Shiyan, WEI Jie, BUEH Cholaw, 2011: Variation in Summer Rainfall in North China during the Period 1956--2007 and Links with Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 363-374.  doi: 10.1007/s00376-010-9220-2
    [8] Xiaoli ZHOU, Wen ZHOU, Dongxiao WANG, Qiang XIE, Lei YANG, Qihua PENG, 2024: Westerlies Affecting the Seasonal Variation of Water Vapor Transport over the Tibetan Plateau Induced by Tropical Cyclones in the Bay of Bengal, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 881-893.  doi: 10.1007/s00376-023-3093-7
    [9] Zheng Weizhong, Ni Yunqi, 1999: A Numerical Experiment Study for Effects of the Grassland Desertification on Summer Drought in North China, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 251-262.  doi: 10.1007/BF02973086
    [10] SONG Yajuan, QIAO Fangli, SONG Zhenya, and JIANG Chunfei, 2013: Water Vapor Transport and Cross-Equatorial Flow over the Asian-Australia Monsoon Region Simulated by CMIP5 Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 726-738.  doi: 10.1007/s00376-012-2148-y
    [11] Wenyue HE, Bo SUN, Huijun WANG, 2021: Dominant Modes of Interannual Variability in Atmospheric Water Vapor Content over East Asia during Winter and Their Associated Mechanisms, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1706-1722.  doi: 10.1007/s00376-021-0014-5
    [12] Li Shuanglin, Ji Liren, Lin Wantao, Ni Yunqi, 2001: The Maintenance of the Blocking over the Ural Mountains during the Second Meiyu Period in the Summer of 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 87-105.  doi: 10.1007/s00376-001-0006-4
    [13] Zou Jinshang, Liu Huilan, 1986: DISTRIBUTION OF WATER VAPOR CONTENT (WVC) AND ITS SEASONAL VARIATION OVER THE MAINLAND OF CHINA, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 385-395.  doi: 10.1007/BF02678659
    [14] CHEN Bin, XU Xiang-De, YANG Shuai, ZHANG Wei, 2012: On the Temporal and Spatial Structure of Troposphere-to- Stratosphere Transport in the Lowermost Stratosphere over the Asian Monsoon Region during Boreal Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1305-1317.  doi: 10.1007/s00376-012-1171-3
    [15] XU Xiangde, ZHOU Li, ZHANG Shengjun, MIAO Qiuju, 2003: Characteristics of the Correlation between Regional Water Vapor Transport along with the Convective Action and Variation of the Pacific Subtropical High in 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 269-283.  doi: 10.1007/s00376-003-0013-8
    [16] Yuting ZHANG, Xiaole PAN, Yu TIAN, Hang LIU, Xueshun CHEN, Baozhu GE, Zhe WANG, Xiao TANG, Shandong LEI, Weijie YAO, Yuanzhe REN, Yongli TIAN, Jie LI, Pingqing FU, Jinyuan XIN, Yele SUN, Junji CAO, Zifa WANG, 2022: Transport Patterns and Potential Sources of Atmospheric Pollution during the XXIV Olympic Winter Games Period, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1608-1622.  doi: 10.1007/s00376-022-1463-1
    [17] PENG Jingbei, SONG Zhengshan, 2003: Heat and Moisture Budgets during the Period of HUBEX/GAME in the Summer of 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 245-251.  doi: 10.1007/s00376-003-0010-y
    [18] Huang Ronghui, Zang Xiaoyun, Zhang Renhe, Chen Jilong, 1998: The Westerly Anomalies over the Tropical Pacific and Their Dynamical Effect on the ENSO Cycles during 1980-1994, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 135-151.  doi: 10.1007/s00376-998-0035-3
    [19] Jiefan YANG, Fei YAN, Hengchi LEI, Shuo JIA, Xiaobo DONG, Xiangfeng HU, 2024: Aircraft Observation and Simulation of the Supercooled Liquid Water Layer in a Warm Conveyor Belt over North China, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 529-544.  doi: 10.1007/s00376-023-3068-8
    [20] YU Yu, CHEN Hongbin, XIA Xiangao, XUAN Yuejian, YU Ke, 2010: Significant Variations of Surface Albedo during a Snowy Period at Xianghe Observatory, China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 80-86.  doi: 10.1007/s00376-009-8151-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 1992
Manuscript revised: 10 March 1992
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Transport of Water Vapor over North China during the Drought Period in Summer of 1980

  • 1. Academy of Meteorological Science, State Meteorological Administration, Beijing 100081,Academy of Meteorological Science, State Meteorological Administration, Beijing 100081,Academy of Meteorological Science, State Meteorological Administration, Beijing 100081

Abstract: The features of water vapor transport, such as temporal evolution, vertical structure and spatial pattern, over North China during the prolonged drought in the summer of 1980 have been analyzed through computation of water vapor flux based on the once daily ECMWF grid-point data at 12GMT. The results indicate that it is unlikely that the characteristics of the atmospheric mass divergence, ascending motion and stratification stability in North China were completely opposite to those in the Yangtze River Valley, where the heavy flood occurred in the summer of 1980. It is major differences that the strong ascending motion and significant water vapor convergence overlap fairly well each other in the vertical levels in the Yangtze River Valley, while the maximum ascending motion is accompa-nied by water vapor divergence or weak water vapor convergence in North China. This vertical structure in North China results in insufficient water vapor supply and, therefore, little condensation and precipitation in the middle and upper atmosphere were produced. Additionally, a mode of monthly-scale low frequency oscillation can be found in water vapor flux, which is in correspondence to the fluctuation period of rainfall.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return