Advanced Search
Article Contents

Numerical Modellings of Properties of the Summer Quasi-Stationary Circulation Systems and Their Monthly Variations


doi: 10.1007/BF02658159

  • An ocean-atmosphere and land-air coupled numerical model system is used to study the basic properties and the monthly time variations of the summer quasi-stationary circulation systems. It is found that either at the upper or at the lower levels of the atmosphere, the circulation patterns have a two-wave structure in the zonal direction at the mid and high latitudes of the Northern Hemisphere. Such a structure of circulation is totally matchable to that of the land-sea distribution there. It is proved, hence, that the land-sea distributive pattern is the fundamental cause for the summer quasi-stationary circulation pattern. The topography in the globe is the secondary factor for circulation sys-tems. The circulation centres of the quasi-stationary systems are always located in certain areas due to the thermodynamic contrast between land and sea.From the time evolutions of the circulation systems it is seen that the change is larger at the beginning period of the time integration, it is because of using the zonally averaged mean fields as the initial values of the model. As long as the basic simulated pattern of circulations reaches the state similar to that of the real climatic fields resulting from the coefficients of the land-sea distribution and the topography, the circulation systems modelled will change slowly and tend to a quasi-stationary state. Therefore, the time integration does not need to last for a very long time, if the pur-pose of numerical modellings is to test sensitivities of some factors influencing the climate. 20 model days may be enough for sensitive experiments.
  • [1] Qian yongfu, Wang Qianqian, 2000: Numerical Simulations of Anomalies of Precipitation and Surface Air Temperature in China in the Summer of 1997, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 221-233.  doi: 10.1007/s00376-000-0005-x
    [2] Kelvin T. F. CHAN, Johnny C. L. CHAN, 2016: Sensitivity of the Simulation of Tropical Cyclone Size to Microphysics Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1024-1035.  doi: 10.1007/s00376-016-5183-2
    [3] Wang Qianqian, Wang Yinhui, Song Yu, Qian Yongfu, 1994: Numerical Modelling of the Effects of Ozone on the Summer Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 201-211.  doi: 10.1007/BF02666546
    [4] Zhu Zhengxin, Cheng Shaopeng, 1988: NUMERICAL EXPERIMENTS ON NH SUBTROPICAL UPPER TROPOSPHERIC QUASI-STATIONARY VORTICES IN SUMMER, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 209-216.  doi: 10.1007/BF02656782
    [5] Daeun JEONG, Ki-Hong MIN, Gyuwon LEE, and Kyung-Eak KIM, 2014: A Case Study of Mesoscale Convective Band (MCB) Development and Evolution along a Quasi-stationary Front, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 901-915.  doi: 10.1007/s00376-013-3089-9
    [6] Wang Huijun, 1994: Modelling the Interannual Variation of Regional Precipitation over China, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 230-238.  doi: 10.1007/BF02666549
    [7] Xia Daqing, Zheng Liangjie, 1986: NUMERICAL SIMULATION OF THE GENERATION OF MESOSCALE CONVECTTVE SYSTEMS IN LARGE-SCALE ENVIRONMENT, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 360-370.  doi: 10.1007/BF02678656
    [8] ZHOU Lingli, ZHAI Guoqing, HE Bin, 2011: Numerical Study of the Mesoscale Systems in the Spiral Rainband of 0509 Typhoon Matsa, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 118-128.  doi: 10.1007/s00376-010-0023-2
    [9] Zhang Xuehong, Liang Xinzhong, 1989: A Numerical World Ocean General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 44-61.  doi: 10.1007/BF02656917
    [10] Xue Feng, Bi Xunqiang, Lin Yihua, 2001: Modelling the Global Monsoon System by IAP 9L AGCM, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 404-412.  doi: 10.1007/BF02919319
    [11] Chong-yu XU, Elin WIDN, Sven HALLDIN, 2005: Modelling Hydrological Consequences of Climate Change-Progress and Challenges, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 789-797.  doi: 10.1007/BF02918679
    [12] Wang Huijun, 1994: Modelling the January and July Climate of 9000 Years before Present, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 319-326.  doi: 10.1007/BF02658151
    [13] JIANG Dabang, ZHANG Zhongshi, 2006: Paleoclimate Modelling at the Institute of Atmospheric Physics, Chinese Academy of Sciences, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 1040-1049.  doi: 10.1007/s00376-006-1040-z
    [14] Chen Yuejuan, Zheng Bin, Zhang Hong, 2002: The Features of Ozone Quasi-Biennial Oscillation in Tropical Stratosphere and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 777-793.  doi: 10.1007/s00376-002-0044-6
    [15] Zhao Li, Zhao Sixiong, 1995: Numerical Experiments of Meiyu(Baiu) Rainfall by Quasi-Lagrangian Limited Area Model with Terrain, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 57-66.  doi: 10.1007/BF02661287
    [16] Ji Liren, S.Tibaldi, 1984: NUMERICAL EXPERIMENTS ON THE SEASONAL TRANSITION OF GENERAL CIRCULATION OVER ASIA--PART Ⅱ, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 188-205.  doi: 10.1007/BF02678131
    [17] Ji Liren, S.Tibaldi, 1984: NUMERICAL EXPERIMENT ON THE SEASONAL TRANSITION OF GENERAL CIRCULATION OVER ASIA - PART Ⅰ, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 128-149.  doi: 10.1007/BF03187624
    [18] Zhang Yaocun, Qian Yongfu, 1999: Numerical Simulation of the Regional Ocean Circulation in the Coastal Areas of China, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 443-450.  doi: 10.1007/s00376-999-0022-3
    [19] Wanli LI, Xiushu QIE, Shenming FU, Debin SU, Yonghai SHEN, 2016: Simulation of Quasi-Linear Mesoscale Convective Systems in Northern China: Lightning Activities and Storm Structure, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 85-100.  doi: 10.1007/s00376-015-4170-3
    [20] LI Weibiao, 2004: Modelling Air-Sea Fluxes during a Western Pacific Typhoon: Role of Sea Spray, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 269-276.  doi: 10.1007/BF02915713

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1994
Manuscript revised: 10 October 1994
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Numerical Modellings of Properties of the Summer Quasi-Stationary Circulation Systems and Their Monthly Variations

  • 1. Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Department of Atmospheric Sciences, Nanjing University, Nanjing 210093,Nanjing Institute of Meteorology, Nanjing 210044

Abstract: An ocean-atmosphere and land-air coupled numerical model system is used to study the basic properties and the monthly time variations of the summer quasi-stationary circulation systems. It is found that either at the upper or at the lower levels of the atmosphere, the circulation patterns have a two-wave structure in the zonal direction at the mid and high latitudes of the Northern Hemisphere. Such a structure of circulation is totally matchable to that of the land-sea distribution there. It is proved, hence, that the land-sea distributive pattern is the fundamental cause for the summer quasi-stationary circulation pattern. The topography in the globe is the secondary factor for circulation sys-tems. The circulation centres of the quasi-stationary systems are always located in certain areas due to the thermodynamic contrast between land and sea.From the time evolutions of the circulation systems it is seen that the change is larger at the beginning period of the time integration, it is because of using the zonally averaged mean fields as the initial values of the model. As long as the basic simulated pattern of circulations reaches the state similar to that of the real climatic fields resulting from the coefficients of the land-sea distribution and the topography, the circulation systems modelled will change slowly and tend to a quasi-stationary state. Therefore, the time integration does not need to last for a very long time, if the pur-pose of numerical modellings is to test sensitivities of some factors influencing the climate. 20 model days may be enough for sensitive experiments.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return