Advanced Search
Article Contents

A Two-Step Shape-Preserving Advection Scheme


doi: 10.1007/BF02658169

  • This paper proposes a new two-step non-oscillatory shape-preserving positive definite finite difference advection transport scheme, which merges the advantages of small dispersion error in the simple first-order upstream scheme and small dissipation error in the simple second-order Lax-Wendroff scheme and is completely different from most of present positive definite advection schemes which are based on revising the upstream scheme results. The proposed scheme is much less time consuming than present shape-preserving or non-oscillatory advection transport schemes and produces results which are comparable to the results obtained from the present more complicated schemes. Elementary tests are also presented to examine the behavior of the scheme.
  • [1] Yi ZHANG, Rucong YU, Jian LI, 2017: Implementation of a Conservative Two-step Shape-Preserving Advection Scheme on a Spherical Icosahedral Hexagonal Geodesic Grid, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 411-427.  doi: 10.1007/s00376-016-6097-8
    [2] Yu Rucong, 1995: Application of a Shape-Preserving Advection Scheme to the Moisture Equation in an E-grid Regional Forecast Model, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 13-19.  doi: 10.1007/BF02661283
    [3] Jun ZHANG, Jiming SUN, Wei DENG, Wenhao HU, Yongqing WANG, 2023: The Importance of the Shape Parameter in a Bulk Parameterization Scheme to the Evolution of the Cloud Droplet Spectrum during Condensation, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 155-167.  doi: 10.1007/s00376-022-2065-7
    [4] Sonia MONTECINOS, Patricia BARRIENTOS, 2006: Dependence of Upper Atmosphere Photochemistry on the Shape of the Diurnal Cycle of the Photolysis Rates, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 207-214.  doi: 10.1007/s00376-006-0207-y
    [5] Yao Keya, Liu Chunlei, 1996: ICE Particle Size and Shape Effect on Solar Energy Scattering Angular Distribution, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 505-510.  doi: 10.1007/BF03342040
    [6] HUANG Bo, CHEN Dehui, LI Xingliang, LI Chao, , 2014: Improvement of the Semi-Lagrangian Advection Scheme in the GRAPES Model: Theoretical Analysis and Idealized Tests, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 693-704.  doi: 10.1007/s00376-013-3086-z
    [7] Lucas HARRIS, 2021: A New Semi-Lagrangian Finite Volume Advection Scheme Combines the Best of Both Worlds, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1608-1609.  doi: 10.1007/s00376-021-1181-0
    [8] LI Xingliang, CHEN Dehui, PENG Xindong, XIAO Feng, CHEN Xiongshan, 2006: Implementation of the Semi-Lagrangian Advection Scheme on a Quasi-Uniform Overset Grid on a Sphere, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 792-801.  doi: 10.1007/s00376-006-0792-9
    [9] Jie TANG, Chungang CHEN, Xueshun SHEN, Feng XIAO, Xingliang LI, 2021: A Positivity-preserving Conservative Semi-Lagrangian Multi-moment Global Transport Model on the Cubed Sphere, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1460-1473.  doi: 10.1007/s00376-021-0393-7
    [10] Chen Jiabin, Wang Jun, 1996: Studies on Non-interpolating Semi-Lagrangian Scheme and Numerical Solution to KdV Equation, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 265-268.  doi: 10.1007/BF02656869
    [11] Yifan ZHAO, Xindong PENG, Xiaohan LI, Siyuan CHEN, 2024: Improved Diurnal Cycle of Precipitation on Land in a Global Non-Hydrostatic Model Using a Revised NSAS Deep Convective Scheme, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 1217-1234.  doi: 10.1007/s00376-023-3121-7
    [12] FENG Qian, CUI Songxue, ZHAO Wei, 2015: Effect of Particle Shape on Dust Shortwave Direct Radiative Forcing Calculations Based on MODIS Observations for a Case Study, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1266-1276.  doi: 10.1007/s00376-015-4235-3
    [13] CAO Jie, Qin XU, 2011: Computing Streamfunction and Velocity Potential in a Limited Domain of Arbitrary Shape. Part II: Numerical Methods and Test Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1445-1458.  doi: 10.1007/s00376-011-0186-5
    [14] Qin XU, CAO Jie, GAO Shouting, 2011: Computing Streamfunction and Velocity Potential in a Limited Domain of Arbitrary Shape. Part I: Theory and Integral Formulae, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1433-1444.  doi: 10.1007/s00376-011-0185-6
    [15] Zhang Banglin, 1994: A Data-Adaptive Filter of the Tahiti-Darwin Southern Oscillation Index and the Associate Scheme of Filling Data Gaps, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 447-458.  doi: 10.1007/BF02658165
    [16] Ye Weizuo, 1991: Influence of Advection on Marine PBL Development, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 201-210.  doi: 10.1007/BF02658094
    [17] Chibuike Chiedozie IBEBUCHI, 2023: Circulation Patterns Linked to the Positive Sub-Tropical Indian Ocean Dipole, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 110-128.  doi: 10.1007/s00376-022-2017-2
    [18] ZHANG Kai, WAN Hui, WANG Bin, ZHANG Meigen, 2008: Consistency Problem with Tracer Advection in the Atmospheric Model GAMIL, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 306-318.  doi: 10.1007/s00376-008-0306-z
    [19] Yiyong LUO, Jian LU, Fukai LIU, Xiuquan WAN, 2016: The Positive Indian Ocean Dipole-like Response in the Tropical Indian Ocean to Global Warming, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 476-488.  doi: 10.1007/s00376-015-5027-5
    [20] ZHOU Qian, DUAN Wansuo, MU Mu, FENG Rong, 2015: Influence of Positive and Negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow: Results from Sensitivity Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 783-793.  doi: 10.1007/s00376-014-4141-0

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1994
Manuscript revised: 10 October 1994
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Two-Step Shape-Preserving Advection Scheme

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100080

Abstract: This paper proposes a new two-step non-oscillatory shape-preserving positive definite finite difference advection transport scheme, which merges the advantages of small dispersion error in the simple first-order upstream scheme and small dissipation error in the simple second-order Lax-Wendroff scheme and is completely different from most of present positive definite advection schemes which are based on revising the upstream scheme results. The proposed scheme is much less time consuming than present shape-preserving or non-oscillatory advection transport schemes and produces results which are comparable to the results obtained from the present more complicated schemes. Elementary tests are also presented to examine the behavior of the scheme.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return