Advanced Search
Article Contents

Helicity Dynamics of Atmospheric Flow


doi: 10.1007/BF02666544

  • Helicity is an important physical variable which is similar to the energy and enstrophy in three-dimensional fluid. It can be used to describe the motion in the direction of fluid rotation and also can be regarded as a new physi-cal variable in turbulence theory. In recent years, it has been used in atmospheric dynamics. In this paper, helicity of atmospheric flow, especially helicity in the boundary layer and in the vicinity of front was discussed. These results show that helicity is usually positive in the boundary layer due to the effect of friction. The helicity of boundary layer flow is larger in anticyclone than that in cyclone, resulting from the different wind structures of boundary layers in an-ticyclone and cyclone under the geostrophic momentum approximation. It is possible that the helicity is negative at certain height in the baroclinic boundary layer. The influences of nonlinearity and baroclinity on the helicity are im-portant. The so called “Cloud Street” in the boundary layer is related to the dynamics of helicity. Helicity in the at-mosphere can be expressed as the temperature advection under some conditions, so helicity would be allowed to des-cribe the frontogenesis and development of frontal structure. The amplitude of helicity increases with time in the frontogenesis. A large gradient of helicity is generated in the region located to the northeast of the surface low and in which the front is formed. In warm frontal region, as well as behind the trough of temperature, the helicity is positive, while the helicity is negative in cold frontal sector and in the ahead ridge of temperature. The largest helicity occurs in the boundary.
  • [1] Wu Rongsheng, Fang Juan, 2001: Mechanism of Balanced Flow and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 323-334.  doi: 10.1007/BF02919313
    [2] YANG Shuai, GAO Shouting, LU Chungu, 2014: A Generalized Frontogenesis Function and Its Application, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1065-1078.  doi: 10.1007/s00376-014-3228-y
    [3] Wang Yunfeng, Wu Rongsheng, Pan Yinong, 2000: Evolution and Frontogenesis of an Imbalanced Flow —the Influence of Vapor Distribution and Orographic Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 256-274.  doi: 10.1007/s00376-000-0008-7
    [4] ZHOU Lingli, DU Huiliang, ZHAI Guoqing, WANG Donghai, 2013: Numerical Simulation of the Sudden Rainstorm Associated with the Remnants of Typhoon Meranti (2010), ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1353-1372.  doi: 10.1007/s00376-012-2127-3
    [5] Majid M. Farahani, Wu Rongsheng, 1998: A Numerical Study of Geostrophic Adjustment and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 179-192.  doi: 10.1007/s00376-998-0038-0
    [6] Xu Yinlong, Qian Fenlan, Chen Zhi, Li Shiming, Zhou Mingyu, 2002: Observational Analyses of Baroclinic Boundary Layer Characteristics during One Frontal Winter Snowstorm, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 153-168.  doi: 10.1007/s00376-002-0041-9
    [7] PENG Jiayi, FANG Juan, WU Rongsheng, 2004: Interaction of Mesoscale Convection and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 814-823.  doi: 10.1007/BF02916377
    [8] Fang Juan, Wu Rongsheng, 1998: Frontogenesis, Evolution and the Time Scale of Front Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 233-246.  doi: 10.1007/s00376-998-0042-4
    [9] Fang Juan, Wu Rongsheng, 2001: Topographic Effect on Geostrophic Adjustment and Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 524-538.  doi: 10.1007/s00376-001-0042-0
    [10] Yang Hongwei, Wang Bin, Ji Zhongzhen, 2002: Application of the Artificial Compression Method to the Simulation of Two-Dimensional Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 863-869.  doi: 10.1007/s00376-002-0051-7
    [11] Guojing LI, Dongxiao WANG, Changming DONG, Jiayi PAN, Yeqiang SHU, Zhenqiu ZHANG, 2024: Frontogenesis and Frontolysis of a Cold Filament Driven by the Cross-Filament Wind and Wave Fields Simulated by a Large Eddy Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 509-528.  doi: 10.1007/s00376-023-3037-2
    [12] YANG Shuai, GAO Shouting, Chungu LU, 2015: Investigation of the Mei-yu Front Using a New Deformation Frontogenesis Function, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 635-647.  doi: 10.1007/s00376-014-4147-7
    [13] Zipeng YUAN, Xiaoyong ZHUGE, Yuan WANG, 2020: The Forced Secondary Circulation of the Mei-yu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 766-780.  doi: 10.1007/s00376-020-9177-8
    [14] Jia Yiqin, Zhao Sixiong, 1994: A Diagnostic Study of Explosive Development of Extratropical Cyclone over East Asia and West Pacific Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 251-270.  doi: 10.1007/BF02658144
    [15] He Jianzhong, 1993: Linear Momentum Approximation and Frontogenesis Caused by Baroclinic Ekman Momentum Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 103-112.  doi: 10.1007/BF02656958
    [16] Wu Rongsheng, 1985: THE INFLUENCES OF OROGRAPHY UPON THE FLOW WITHIN EKMAN BOUNDARY LAYER UNDER THE APPROXIMATION OF GEOSTROPHIC MOMENTUM, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 1-7.  doi: 10.1007/BF03179731
    [17] Zhao Ming, 1991: The Effect of Topography on Quasi-Geostrophic Frontogenesis, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 23-40.  doi: 10.1007/BF02657362
    [18] Li Xingsheng, Yang Shuowen, 1986: A MODEL STUDY OF THE NOCTURNAL BOUNDARY LAYER, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 59-71.  doi: 10.1007/BF02680045
    [19] Zhao Ming, Xu Yinzi, Wu Rongsheng, 1989: The Wind Structure in Planetary Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 365-376.  doi: 10.1007/BF02661542
    [20] Lin Naishi, Zhou Zugang, Zhou Liufei, 1998: An Analytical Study on the Urban Boundary Layer, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 258-266.  doi: 10.1007/s00376-998-0044-2

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1994
Manuscript revised: 10 April 1994
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Helicity Dynamics of Atmospheric Flow

  • 1. Department of Atmospheric Sciences, Meso-scale Severe Weather Research Laboratory / SEC, Nanjing University, Nanjing 210008, P. R. China,Department of Atmospheric Sciences, Meso-scale Severe Weather Research Laboratory / SEC, Nanjing University, Nanjing 210008, P. R. China

Abstract: Helicity is an important physical variable which is similar to the energy and enstrophy in three-dimensional fluid. It can be used to describe the motion in the direction of fluid rotation and also can be regarded as a new physi-cal variable in turbulence theory. In recent years, it has been used in atmospheric dynamics. In this paper, helicity of atmospheric flow, especially helicity in the boundary layer and in the vicinity of front was discussed. These results show that helicity is usually positive in the boundary layer due to the effect of friction. The helicity of boundary layer flow is larger in anticyclone than that in cyclone, resulting from the different wind structures of boundary layers in an-ticyclone and cyclone under the geostrophic momentum approximation. It is possible that the helicity is negative at certain height in the baroclinic boundary layer. The influences of nonlinearity and baroclinity on the helicity are im-portant. The so called “Cloud Street” in the boundary layer is related to the dynamics of helicity. Helicity in the at-mosphere can be expressed as the temperature advection under some conditions, so helicity would be allowed to des-cribe the frontogenesis and development of frontal structure. The amplitude of helicity increases with time in the frontogenesis. A large gradient of helicity is generated in the region located to the northeast of the surface low and in which the front is formed. In warm frontal region, as well as behind the trough of temperature, the helicity is positive, while the helicity is negative in cold frontal sector and in the ahead ridge of temperature. The largest helicity occurs in the boundary.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return