Advanced Search

Volume 4 Issue 2

Apr.  1987

Article Contents

EQUATORIAL SOLITARY WAVES OF TROPICAL ATMOSPHERIC MOTION IN SHEAR FLOW


doi: 10.1007/BF02677059

  • Starting from the primary equations, the author derives the KdV equation which describes solitary Rossby waves in the tropical atmosphere, and indicates that, because these waves are ageostrophic, they differ from the quasigeostrophic solitary Rossby waves studied by Redekopp et al. Owing to nonlinear action, these waves are also different from traditional linear waves of the tropical atmosphere. The author believes that the stationary tropical atmospheric waves reflect the characteristics of solitary waves in that the energy does not disperse.
  • [1] Yi Zengxin, T. Warn, 1987: A NUMERICAL METHOD FOR SOLVING THE EVOLUTION EQUATION OF SOLITARY ROSSBY WAVES ON A WEAK SHEAR, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 43-54.  doi: 10.1007/BF02656660
    [2] Zhao Qiang, Fu Zuntao, Liu Shikuo, 2001: Equatorial Envelope Rossby Solitons in a Shear Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 418-428.  doi: 10.1007/BF02919321
    [3] Chen Zhongming, Liu Fuming, Li Xiaoping, Tao Jie, 1994: Oscillatory Rossby Solitary Waves in the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 65-73.  doi: 10.1007/BF02656995
    [4] Xiaofan Li, Han-Ru Cho, 1997: Development and Propagation of Equatorial Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 323-338.  doi: 10.1007/s00376-997-0053-6
    [5] CHEN Xianyan, Masahide KIMOTO, 2009: Simulating Tropical Instability Waves in the Equatorial Eastern Pacific with a Coupled General Circulation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1015-1026.  doi: 10.1007/s00376-009-8078-7
    [6] Shuguang WANG, Juan FANG, Xiaodong TANG, Zhe-Min TAN, 2022: A Survey of Statistical Relationships between Tropical Cyclone Genesis and Convectively Coupled Equatorial Rossby Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 747-762.  doi: 10.1007/s00376-021-1089-8
    [7] Shen Xinyong, Ni Yunqi, Ding Yihui, 2002: On Problem of Nonlinear Symmetric Instability in Zonal Shear Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 350-364.  doi: 10.1007/s00376-002-0027-7
    [8] R. Dhar, C. Guha-Roy, D. K. Sinha, 1991: On a Class of Solitary Wave Solutions of Atmospheric Nonlinear Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 357-362.  doi: 10.1007/BF02919618
    [9] Wen Jingsong, Wang Yongguang, 1995: The Effect of Weak Shear-induced Motion on Brownian Coagulation of Aerosol Particles, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 187-194.  doi: 10.1007/BF02656831
    [10] He Jianzhong, 1993: Topography and the Non-linear Rossby Wave in the Zonal Shear Basic Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 233-242.  doi: 10.1007/BF02919146
    [11] Yang Peicai, 1985: SOME CATASTROPHE PROPERTIES OF TWO-LAYER SHEAR FLOW, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 498-507.  doi: 10.1007/BF02678748
    [12] Tianju WANG, Zhong ZHONG, Ju WANG, 2018: Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 531-539.  doi: 10.1007/s00376-017-7126-y
    [13] Zhao Ping, 1991: The Effects of Zonal Flow on Nonlinear Rossby Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 299-306.  doi: 10.1007/BF02919612
    [14] Chen Jiong, Liu Shikuo, 1998: The Solitary Waves of the Barotropic Quasi-Geostrophic Model with the Large-scale Orography, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 404-411.  doi: 10.1007/s00376-998-0010-z
    [15] Tan Zhemin, Wu Rongsheng, 1994: Helicity Dynamics of Atmospheric Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 175-188.  doi: 10.1007/BF02666544
    [16] LIU Yudi, WANG Bin, JI Zhongzhen, 2003: Research on Atmospheric Motion in Horizontal Discrete Grids, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 139-148.  doi: 10.1007/BF03342058
    [17] Cory BARTON, Ming CAI, 2017: Equatorial Wave Expansion of Instantaneous Flows for Diagnosis of Equatorial Waves from Data: Formulation and Illustration, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1219-1234.  doi: 10.1007/s00376-017-6323-z
    [18] Liu Shida, Liu Shikuo, 1990: Advances in Studies on Nonlinear Atmospheric Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 227-244.  doi: 10.1007/BF02919161
    [19] Ren Shuzhan, 1991: Nonlinear Stability of Plane Rotating Shear Flow under Three-Dimensional Nondivergence Disturbances, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 129-136.  doi: 10.1007/BF02658089
    [20] Zheng Xingyu, Zeng Qingcun, Huang Ronghui, 1991: The Propagation of Inertia-Gravity Waves and Their Influence on Mean Zonal Flow, Part One: the Propagation of Inertia-Gravity Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 431-446.  doi: 10.1007/BF02919266

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 April 1987
Manuscript revised: 10 April 1987
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

EQUATORIAL SOLITARY WAVES OF TROPICAL ATMOSPHERIC MOTION IN SHEAR FLOW

  • 1. Institute of Atmospheric Physics, Academia Sinica, Beijing

Abstract: Starting from the primary equations, the author derives the KdV equation which describes solitary Rossby waves in the tropical atmosphere, and indicates that, because these waves are ageostrophic, they differ from the quasigeostrophic solitary Rossby waves studied by Redekopp et al. Owing to nonlinear action, these waves are also different from traditional linear waves of the tropical atmosphere. The author believes that the stationary tropical atmospheric waves reflect the characteristics of solitary waves in that the energy does not disperse.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return