Advanced Search

Volume 2 Issue 3

Jul.  1985

Article Contents

DETERMINATION OF THE DISTANCE BETWEEN TWO ADJACENT STATIONS, THE OBSERVATIONAL VERTICAL INCREMENT AND THE OBSERVATIONAL TIME INTERVAL IN OPTIMUM SENSE


doi: 10.1007/BF02677247

  • Considering the observational error, the truncation error and the requirements of numerical weather prediction, three formulas for determining the distance between two adjacent stations d1, the observational vertical increment △p1 and the observational time interval △t1 in optimum sense, have been derived. Since they depend on the shortest wavelength concerned and the ratio of maximum observational error to wave amplitude, the results are quite different for different scale systems.For the filtered model the values of d1, △p1,, and △t1 in general come near those required in the MANUAL on the GOS published in 1980 by WMO. But for the primitive equation model the estimated value of △t1 is much less than those required in the filtered model case.Therefore, it is improper to study the fast moving and developing processes of the atmospheric motion only on the basis of the conventional observations. It seems to be necessary to establish an optimum composite observational system including the surface-based system and the space-based system.
  • [1] Zou Han, Zhou Libo, Jian Yongxiao, Liu Yu, 2002: An Observational Study on the Vertical Distribution and Synoptic Variation of Ozone in the Arctic, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 855-862.  doi: 10.1007/s00376-002-0050-8
    [2] CHEN Jinbei, HU Yinqiao, ZHANG Lei, 2007: Principle of Cross Coupling Between Vertical Heat Turbulent Transport and Vertical Velocity and Determination of Cross Coupling Coefficient, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 89-100.  doi: 10.1007/s00376-007-0089-7
    [3] Lang ZHANG, Yaoming MA, Weiqiang MA, Binbin WANG, 2018: Comparison of Different Generation Mechanisms of Free Convection between Two Stations on the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1137-1144.  doi: 10.1007/s00376-018-7195-6
    [4] HU Yongyun, ZHOU Chen, LIU Jiping, 2011: Observational Evidence for Poleward Expansion of the Hadley Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 33-44.  doi: 10.1007/s00376-010-0032-1
    [5] Xie Yibing, 1984: OBSERVATIONAL AND THEORETICAL STUDIES OF THE MOIST BAROCLINIC ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 141-164.  doi: 10.1007/BF02678127
    [6] Jai-Ho Oh, Won-Tae Kwon, Sang-Boom Ryoo, 1997: Review of the Researches on Changma and Future Observational Study (KORMEX), ADVANCES IN ATMOSPHERIC SCIENCES, 14, 207-222.  doi: 10.1007/s00376-997-0020-2
    [7] BIAN Jianchun, YANG Peicai, 2005: Interdecadal Variations of Phase Delays Between Two Ni(n)o Indices at Different Time Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 122-125.  doi: 10.1007/BF02930875
    [8] WANG Yanhui, ZHANG Guangshu, ZHANG Tong, LI Yajun, WU Bin, and ZHANG Tinglong, 2013: Interaction between adjacent lightning discharges in clouds, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1106-1116.  doi: 10.1007/s00376-012-2008-9
    [9] BAI Jianhui, WANG Gengchen, 2003: Establishing a Ultraviolet Radiation Observational Network and Enhancing the Study on Ultraviolet Radiation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 767-774.  doi: 10.1007/BF02915401
    [10] NIU Shengjie, ZHAO Lijuan, LU Chunsong, YANG Jun, WANG Jing, WANG Weiwei, 2012: Observational Evidence for the Monin-Obukhov Similarity under All Stability Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 285-294.  doi: 10.1007/s00376-011-1112-6
    [11] Yong-Sang CHOI, Chang-Hoi HO, Sang-Woo KIM, Richard S. LINDZEN, 2010: Observational Diagnosis of Cloud Phase in the Winter Antarctic Atmosphere for Parameterizations in Climate Models, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1233-1245.  doi: 10.1007/s00376-010-9175-3
    [12] Yan Junyue, 1997: Observational Study on the Onset of the South China Sea Southwest Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 277-287.  doi: 10.1007/s00376-997-0026-9
    [13] Yonghong LIU, Bing DANG, Yongming XU, Fuzhong WENG, 2021: An Observational Study on the Local Climate Effect of the Shangyi Wind Farm in Hebei Province, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1905-1919.  doi: 10.1007/s00376-021-0290-0
    [14] WANG Gaili, LIU Liping, DING Yuanyuan, 2012: Improvement of Radar Quantitative Precipitation Estimation Based on Real-Time Adjustments to Z--R Relationships and Inverse Distance Weighting Correction Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 575-584.  doi: 10.1007/s00376-011-1139-8
    [15] Zhao Shengju, 1986: RELATION BETWEEN LONG-DISTANCE MIGRATION OF ORIENTAL ARMYWORMS AND SEASONAL VARIATION OF GENERAL CIRCULATION OVER EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 215-226.  doi: 10.1007/BF02682555
    [16] Yan Shaojin, Peng Yongqing, Wang Jianzhong, 1991: Determination of Kolmogorov Entropy of Chaotic Attractor Included in One-Dimensional Time Series of Meteorological Data, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 243-250.  doi: 10.1007/BF02658098
    [17] Sandeep D. WAGH, Baban NAGARE, Sanjay D. MORE, P. Pradeep KUMAR, 2017: Multiyear Observations of Deposition-Mode Ice Nucleating Particles at Two High-Altitude Stations in India, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1437-1446.  doi: 10.1007/s00376-017-7048-8
    [18] Xu Yinlong, Qian Fenlan, Chen Zhi, Li Shiming, Zhou Mingyu, 2002: Observational Analyses of Baroclinic Boundary Layer Characteristics during One Frontal Winter Snowstorm, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 153-168.  doi: 10.1007/s00376-002-0041-9
    [19] Peng LIU, Chung-Hsiung SUI, 2014: An Observational Analysis of the Oceanic and Atmospheric Structure of Global-Scale Multi-decadal Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 316-330.  doi: 10.1007/s00376-013-2305-y
    [20] Shuhua YU, Wenliang GAO, Dixiang XIAO, Jun PENG, 2016: Observational Facts Regarding the Joint Activities of the Southwest Vortex and Plateau Vortex after Its Departure from the Tibetan Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 34-46.  doi: 10.1007/s00376-015-5039-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 1985
Manuscript revised: 10 July 1985
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

DETERMINATION OF THE DISTANCE BETWEEN TWO ADJACENT STATIONS, THE OBSERVATIONAL VERTICAL INCREMENT AND THE OBSERVATIONAL TIME INTERVAL IN OPTIMUM SENSE

  • 1. StateMeteorologicalAdministration,Beijing

Abstract: Considering the observational error, the truncation error and the requirements of numerical weather prediction, three formulas for determining the distance between two adjacent stations d1, the observational vertical increment △p1 and the observational time interval △t1 in optimum sense, have been derived. Since they depend on the shortest wavelength concerned and the ratio of maximum observational error to wave amplitude, the results are quite different for different scale systems.For the filtered model the values of d1, △p1,, and △t1 in general come near those required in the MANUAL on the GOS published in 1980 by WMO. But for the primitive equation model the estimated value of △t1 is much less than those required in the filtered model case.Therefore, it is improper to study the fast moving and developing processes of the atmospheric motion only on the basis of the conventional observations. It seems to be necessary to establish an optimum composite observational system including the surface-based system and the space-based system.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return