Advanced Search

Volume 2 Issue 4

Oct.  1985

Article Contents

THE HEATING FIELD IN AN ASYMMETRIC HURRICANE PART II:RESULTS OF COMPUTATIONS


doi: 10.1007/BF02678742

  • This is the second part of a paper on the distribution of heating fields in a hurricane. The first part dealt with the mathematical framework. The second part, i. e. the present paper deals with numerical calculations for an actual hurricane.The following sequence of calculations has been performed after the analysis and tabulation of an initial field of the tangential velocity V (r, θ, p): (1) the radial equation of motion is used to determine the geopotential heights; (2) the hydrostatic equation is used to determine the temperature field; (3) the tangential equation and the mass continuity equation are combined to obtain an omega equation whose solution determines the vertical velocity; (4) the radial velocity is next determined from the mass continuity equation; and (5) the heating function is finally determined from the first law of thermodynamics.The results of this study show an asymmetric banded structure (eye wall and rainband) of the vertical motion field as well as the heating field; these show close resemblence to observations. An analysis of the non-linearities of the asymmetric momentum distribution is shown to be crucial in the analysis of the hurricane heat sources.
  • [1] T.N.Krishnamurti, Sheng Jian, 1985: THE HEATING FIELD IN AN ASYMMETRIC HURRICANE -PART I:SCALE ANALYSIS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 402-413.  doi: 10.1007/BF02677256
    [2] Dai Yongjiu, Xue Feng, Zeng Qingcun, 1998: A Land Surface Model (IAP94) for Climate Studies Part II: Implementation and Preliminary Results of Coupled Model with IAP GCM, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 47-62.  doi: 10.1007/s00376-998-0017-5
    [3] Zhuojian Yuan, Donald R. Johnson, 1998: The Role of Diabatic Heating, Torques and Stabilities in Forcing the Radial-Vertical Circulation within Cyclones Part II: Case Study of Extratropical and Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 447-488.  doi: 10.1007/s00376-998-0026-4
    [4] LIU Huizhi, LIANG Bin, ZHU Fengrong, ZHANG Boyin, SANG Jianguo, 2004: Water-Tank Experiment on the Thermal Circulation Induced by the Bottom Heating in an Asymmetric Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 536-546.  doi: 10.1007/BF02915721
    [5] Y. L. McHall, 1993: Large Scale Perturbations in Extratropical Atmosphere-Part II: On Geostrophic Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 181-192.  doi: 10.1007/BF02919140
    [6] Yong L. McHall, 1993: Group Velocity of Anisotropic Waves-Part II: Conservative Properties, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 407-414.  doi: 10.1007/BF02656965
    [7] Jiayi PENG, Melinda S. PENG, Tim LI, Eric HENDRICKS, 2014: Effect of Baroclinicity on Vortex Axisymmetrization. Part II: Baroclinic Basic Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1267-1278.  doi: 10.1007/s00376-014-3238-9
    [8] Y. L. McHall, 1992: Wintertime Stratospheric Anomalies-Part II: Sudden Warmings, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 311-322.  doi: 10.1007/BF02656941
    [9] Yong. L. McHall, 1991: Planetary Stationary Waves in the Atmosphere Part II: Thermal Stationary Waves, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 225-236.  doi: 10.1007/BF02658096
    [10] KUANG Xueyuan, ZHANG Yaocun, 2005: Seasonal Variation of the East Asian Subtropical Westerly Jet and Its Association with the Heating Field over East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 831-840.  doi: 10.1007/BF02918683
    [11] MA Yaoming, WANG Binbin, ZHONG Lei, MA Weiqiang, 2012: The Regional Surface Heating Field over the Heterogeneous Landscape of the Tibetan Plateau Using MODIS and In-Situ Data, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 47-53.  doi: 10.1007/s00376-011-1008-5
    [12] Li Yang, 2000: Baroclinic Instability in the Generalized Phillips’ Model Part II: Three-layer Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 413-432.  doi: 10.1007/s00376-000-0033-6
    [13] ZENG Hongling, JI Jinjun, WU Guoxiong, 2008: An Updated Coupled Model for Land-Atmosphere Interaction. Part II: Simulations of Biological Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 632-640.  doi: 10.1007/s00376-008-0632-1
    [14] XUE Haile, SHEN Xueshun, CHOU Jifan, 2015: An Online Model Correction Method Based on an Inverse Problem: Part II——Systematic Model Error Correction, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1493-1503.  doi: 10.1007/s00376-015-4262-0
    [15] Peng LIU, Jianning SUN, Lidu SHEN, 2016: Parameterization of Sheared Entrainment in a Well-developed CBL. Part II: A Simple Model for Predicting the Growth Rate of the CBL, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1185-1198.  doi: 10.1007/s00376-016-5209-9
    [16] Kong Fanyou, 1994: The Vertical Transport of Air Pollutants by Convective Clouds Part II: Transport of Soluble Gases and Sensitivity Tests, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 1-12.  doi: 10.1007/BF02656988
    [17] Dai Xiaosu, Ding Yihui, 1994: A Modeling Study of Climate Change and Its Implication for Agriculture in China Part II: The Implication of Climate Change for Agriculture in China, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 499-506.  doi: 10.1007/BF02658171
    [18] Liu Yangang, 1997: On the Unified Theory of Atmospheric Particle Systems Part II: Self-affine Particles, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 369-388.  doi: 10.1007/s00376-997-0057-2
    [19] Zeng Qingcun, Lu Peisheng, Li Rongfeng, Yuan Chongguang, 1986: EVOLUTION OF LARGE SCALE DISTURBANCES AND THEIR INTERACTION WITH MEAN FLOW IN A ROTATING BAROTROPIC ATMOSPHERE PART II, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 172-188.  doi: 10.1007/BF02680044
    [20] Qiu Jinhuan, Sun Jinhui, Xia Qilin, Zhang Jinding, Zhou Xiuji, 1986: SIMULTANEOUS DETERMINATION OF AEROSOL SIZE DISTRIBUTION AND REFRACTIVE INDEX AND SURFACE ALBEDO FROM RADIANCE—PART II: APPLICATION, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 341-348.  doi: 10.1007/BF02678654

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1985
Manuscript revised: 10 October 1985
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

THE HEATING FIELD IN AN ASYMMETRIC HURRICANE PART II:RESULTS OF COMPUTATIONS

  • 1. DepartmentofMeteorologyFloridaStateUniversjtyU.S.A.,DepartmentofMeteorologyFloridaStateUniversjtyU.S.A.

Abstract: This is the second part of a paper on the distribution of heating fields in a hurricane. The first part dealt with the mathematical framework. The second part, i. e. the present paper deals with numerical calculations for an actual hurricane.The following sequence of calculations has been performed after the analysis and tabulation of an initial field of the tangential velocity V (r, θ, p): (1) the radial equation of motion is used to determine the geopotential heights; (2) the hydrostatic equation is used to determine the temperature field; (3) the tangential equation and the mass continuity equation are combined to obtain an omega equation whose solution determines the vertical velocity; (4) the radial velocity is next determined from the mass continuity equation; and (5) the heating function is finally determined from the first law of thermodynamics.The results of this study show an asymmetric banded structure (eye wall and rainband) of the vertical motion field as well as the heating field; these show close resemblence to observations. An analysis of the non-linearities of the asymmetric momentum distribution is shown to be crucial in the analysis of the hurricane heat sources.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return