Advanced Search

Volume 3 Issue 1

Jan.  1986

Article Contents

THE EFFECTS OF THE QINGHAI-XIZANG PLATEAU ON THE MEAN SUMMER CIRCULATION OVER EAST ASIA


doi: 10.1007/BF02680046

  • Four numerical experiments of simulation have been conducted in this paper by the use of a five-layer primitive equation numerical model with incorporated pressure-sigma vertical coordinate system. The initial fields are taken from the July zonal mean data of many years, while the heat sources and sinks are ideally specified according to the mean heating field over the East Asia calculated from the real data of July, 1979. On the basis of simulated results of temperature and geopotential height patterns we emphatically discuss the effects of the topography and the heating of the Qinghai-Xizang Plateau. From the analyses in this paper, it appears that the heating over the Bengal region makes a larger contribution to the middle and the south branches of the monsoon cell and is also the main cause for the existence of the southerly channel to the east of the Plateau, for the break of the subtropical anticyclone belt below the 500 hPa level and for the formation of the summer Asian anticyclone at the 300 hPa level, while the heating over the Plateau makes a larger contribution to the Plateau monsoon cell and to the anticyclone at the 100 hPa.
  • [1] Ding Yihui, 1992: Effects of the Qinghai-Xizang (Tibetan) Plateau on the Circulation Features over the Plateau and Its Surrounding Areas, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 112-130.  doi: 10.1007/BF02656935
    [2] Zhao Ping, Chen Longxun, 2001: Interannual Variability of Atmospheric Heat Source/Sink over the Qinghai-Xizang (Tibetan) Plateau and its Relation to Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 106-116.  doi: 10.1007/s00376-001-0007-3
    [3] Chen Lieting, Wu Renguang, 2000: Interannual and Decadal Variations of Snow Cover over Qinghai-Xizang Plateau and Their Relationships to Summer Monsoon Rainfall in China, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 18-30.  doi: 10.1007/s00376-000-0040-7
    [4] Zhong Qiang, Li Yinhai, 1988: SATELLITE OBSERVATION OF SURFACE ALBEDO OVER THE QINGHAI-XIZANG PLATEAU REGION, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 57-66.  doi: 10.1007/BF02657347
    [5] Zhu Qiangen, Hu Jianglin, 1995: Effects on Asian Monsoon of Gigantic Qinghai-Xizang Plateau and Western Pacific Warm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 351-360.  doi: 10.1007/BF02656984
    [6] WEI Na, GONG Yuanfa, HE Jinhai, 2009: Structural Variation of Atmospheric Heat Source over the Qinghai-Xizang Plateau and its Influence on Precipitation in Northwest China the Qinghai-Xizang Plateau and Its Influence on Precipitation in Northwest China, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1027-1041.  doi: 10.1007/s00376-009-7207-7
    [7] ZHU Guofu, CHEN Shoujun, 2003: A Numerical Case Study on a Mesoscale Convective System over the Qinghai-Xizang (Tibetan) Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 385-397.  doi: 10.1007/BF02690797
    [8] Zhao Ping, Chen Longxun, 2000: Calculation of Solar Albedo and Radiation Equilibrium over the Qinghai-Xizang Plateau and Analysis of Their Climatic Features, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 140-156.  doi: 10.1007/s00376-000-0050-5
    [9] ZHU Guofu, CHEN Shoujun, 2003: Analysis and Comparison of Mesoscale Convective Systems over the Qinghai-Xizang (Tibetan) Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 311-322.  doi: 10.1007/BF02690789
    [10] Ding Yihui, Hu Jian, 1988: THE VARIATION OF THE HEAT SOURCES IN EAST CHINA IN THE EARLY SUMMER OF 1984 AND THEIR EFFECTS ON THE LARGE-SCALE CIRCULATION IN EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 171-180.  doi: 10.1007/BF02656779
    [11] Luo Meixia, Zhu Baozhen, Zhang Xuehong, 1985: THE DYNAMIC EFFECT OF THE TIBETAN PLATEAU ON THE FORMATION OF ZONAL TYPE CIRCULATION OVER EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 158-166.  doi: 10.1007/BF03179748
    [12] Chen Longxun, Jin Zuhui, 1984: THE MEDIUM-RANGE VARIATIONS OF THE SUMMER MONSOON CIRCULATION SYSTEM OVER EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 224-245.  doi: 10.1007/BF02678135
    [13] Jinlei CHEN, Yuan YUAN, Xianyu YANG, Zuoliang WANG, Shichang KANG, Jun WEN, 2023: The Characteristics and Controlling Factors of Water and Heat Exchanges over the Alpine Wetland in the East of the Qinghai–Tibet Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 201-210.  doi: 10.1007/s00376-022-1443-5
    [14] He Jinhai, Li Jun, Zhu Qiangen, 1989: Sensitivity Experiments on Summer Monsoon Circulation Cell in East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 120-132.  doi: 10.1007/BF02656923
    [15] Wu Renguang, Chen Lieting, 1998: Decadal Variation of Summer Rainfall in the Yangtze-Huaihe River Valley and Its Relationship to Atmospheric Circulation Anomalies over East Asia and Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 510-522.  doi: 10.1007/s00376-998-0028-2
    [16] Gong-Wang Si, Kuranoshin Kato, Takao Takeda, 1995: The Early Summer Seasonal Change of Large-scale Circulation over East Asia and Its Relation to Change of The Frontal Features and Frontal Rainfall Environment During 1991 Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 151-176.  doi: 10.1007/BF02656829
    [17] Chen Wanlong, Chu Pao-Shin, 1990: On the Couplings between Chebyshev Coefficients as Derived from the Monthly Mean Geopotential Fields at 500 hPa over East Asia and the Southern Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 347-353.  doi: 10.1007/BF03179766
    [18] Wu Guoxiong, Stefano Tibaldi, 1987: THE EFFECTS OF MECHANICAL FORCING ON THE MEAN MERIDIONAL CIRCULATION AND TRANSFER PROPERTIES OF THE ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 24-42.  doi: 10.1007/BF02656659
    [19] ZHANG Yuli, LIU Yi, LIU Chuanxi, V. F. SOFIEVA, 2015: Satellite Measurements of the Madden-Julian Oscillation in Wintertime Stratospheric Ozone over the Tibetan Plateau and East Asia, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1481-1492.  doi: 10.1007/s00376-015-5005-y
    [20] Huang Ronghui, Yan Bangliang, 1987: THE PHYSICAL EFFECTS OF TOPOGRAPHY AND HEAT SOURCES ON THE FORMATION AND MAINTENANCE OF THE SUMMER MONSOON OVER ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 13-23.  doi: 10.1007/BF02656658

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1986
Manuscript revised: 10 January 1986
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

THE EFFECTS OF THE QINGHAI-XIZANG PLATEAU ON THE MEAN SUMMER CIRCULATION OVER EAST ASIA

  • 1. Lanzhou Institute of Plateau Atmospheric Physics, Academia Sinica, Lanzhou,Lanzhou Institute of Plateau Atmospheric Physics, Academia Sinica, Lanzhou,Department of Geology and Geography, Lanzhou University, Lanzhou,Department of Geology and Geography, Lanzhou University, Lanzhou

Abstract: Four numerical experiments of simulation have been conducted in this paper by the use of a five-layer primitive equation numerical model with incorporated pressure-sigma vertical coordinate system. The initial fields are taken from the July zonal mean data of many years, while the heat sources and sinks are ideally specified according to the mean heating field over the East Asia calculated from the real data of July, 1979. On the basis of simulated results of temperature and geopotential height patterns we emphatically discuss the effects of the topography and the heating of the Qinghai-Xizang Plateau. From the analyses in this paper, it appears that the heating over the Bengal region makes a larger contribution to the middle and the south branches of the monsoon cell and is also the main cause for the existence of the southerly channel to the east of the Plateau, for the break of the subtropical anticyclone belt below the 500 hPa level and for the formation of the summer Asian anticyclone at the 300 hPa level, while the heating over the Plateau makes a larger contribution to the Plateau monsoon cell and to the anticyclone at the 100 hPa.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return