Advanced Search
Article Contents

The Water Vapor Transport Model at the Regional Boundary during the Meiyu Period


doi: 10.1007/BF02690791

  • The water vapor transport model at the regional boundary in the Meiyu period is put forward throughdiagnostic analysis. The numerical simulation on the water vapor transport at the boundary of China inthe heavy rainfall period during June-July 1998 shows that the feature of water vapor transport in June isdifferent from that in July. The main body of the water cycle that forms the torrential rain in the Yangtze River Valley is made up of water vapor transport at the western and southern boundaries of the Chinaregion in June, whereas the water vapor flow at the western boundary in middle Tibet turns out to bethe main body of water vapor sources in July. The water vapor transport at the western boundary ofthe Tibetan Plateau and the southern boundary of China plays an important role in the torrential rainin the Yangtze River Valley. The temporal and spatial distribution characteristics of water vapor flow atthe regional boundary and their theoretical model would provide the scientific proof for the heavy rainforecasts in the Yangtze River Valley.
  • [1] NIU Tao, WANG Jizhi, YANG Yuanqin, LIU Hongli, CHEN Miao, LIU Jiyan, 2013: Development of a Meteorological and Hydrological Coupling Index for Droughts and Floods along the Yangtze River Valley of China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1653-1662.  doi: 10.1007/s00376-013-2303-0
    [2] WANG Shuzhou, YU Entao, WANG Huijun, 2012: A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 731-743.  doi: 10.1007/s00376-012-1176-y
    [3] LIU Ge, WU Renguang, SUN Shuqing, WANG Huimei, 2015: Synergistic Contribution of Precipitation Anomalies over Northwestern India and the South China Sea to High Temperature over the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1255-1265.  doi: 10.1007/s00376-015-4280-y
    [4] LI Yuefeng, 2007: Conversion of Kinetic Energy from Synoptic Scale Disturbance to Low-Frequency Fluctuation over the Yangtze River Valley in the Summers of 1997 and 1999, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 591-598.  doi: 10.1007/s00376-007-0591-y
    [5] Lu LIU, Lingkun RAN, Shouting GAO, 2016: Evolution of Instability before and during a Torrential Rainstorm in North China, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 110-120.  doi: 10.1007/s00376-015-5080-0
    [6] GAO Shouting, ZHOU Yushu, CUI Xiaopeng, DAI Guoping, 2004: Impacts of Cloud-Induced Mass Forcing on the Development of Moist Potential Vorticity Anomaly During Torrential Rains, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 923-927.  doi: 10.1007/BF02915594
    [7] WANG Pengyun, YANG Jing, 2003: Observation and Numerical Simulation of Cloud Physical Processes Associated with Torrential Rain of the Meiyu Front, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 77-96.  doi: 10.1007/BF03342052
    [8] XIONG Zhe, WANG Shuyu, ZENG Zhaomei, FU Congbin, 2003: Analysis of Simulated Heavy Rain over the Yangtze River Valley During 11-30 June 1998 Using RIEMS, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 815-824.  doi: 10.1007/BF02915407
    [9] Yang ZHAO, Xiangde XU, Bin CHEN, Yinjun Wang, 2016: The Upstream "Strong Signals" of the Water Vapor Transport over the Tibetan Plateau during a Heavy Rainfall Event in the Yangtze River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1343-1350.  doi: 10.1007/s00376-016-6118-7
    [10] SUN Li, SHEN Baizhu, SUI Bo, 2010: A Study on Water Vapor Transport and Budget of Heavy Rain in Northeast China, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1399-1414.  doi: 10.1007/s00376-010-9087-2
    [11] DING Jincai, YANG Yinming, YE Qixin, HUANG Yan, MA Xiaoxing, MA Leiming, Y. R. GUO, 2007: Moisture Analysis of a Squall Line Case Based on Precipitable Water Vapor Data from a Ground-Based GPS Network in the Yangtze River Delta, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 409-420.  doi: 10.1007/s00376-007-0409-y
    [12] Liu Yongqiang, Ding Yihui, Li Yuehong, 1992: Transport of Water Vapor over North China during the Drought Period in Summer of 1980, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 213-222.  doi: 10.1007/BF02657511
    [13] BAO Ming, 2008: Relationship Between Persistent Heavy Rain Events in the Huaihe River Valley and the Distribution Pattern of Convective Activities in the Tropical Western Pacific Warm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 329-338.  doi: 10.1007/s00376-008-0329-5
    [14] HONG Jieli, LIU Yimin, 2012: Contrasts of Atmospheric Circulation and Associated Tropical Convection between Huaihe River Valley and Yangtze River Valley Mei-yu Flooding, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 755-768.  doi: 10.1007/s00376-012-1217-6
    [15] Li Shuanglin, Ji Liren, Lin Wantao, Ni Yunqi, 2001: The Maintenance of the Blocking over the Ural Mountains during the Second Meiyu Period in the Summer of 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 87-105.  doi: 10.1007/s00376-001-0006-4
    [16] Huiyan XU, Xiaofan LI, Jinfang YIN, Dengrong ZHANG, 2023: Predecessor Rain Events in the Yangtze River Delta Region Associated with South China Sea and Northwest Pacific Ocean (SCS-WNPO) Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-022-2069-3
    [17] WANG Xin, WANG Dongxiao, ZHOU Wen, LI Chongyin, 2012: Interdecadal Modulation of the Influence of La Nina Events on Mei-yu Rainfall over the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 157-168.  doi: 10.1007/s00376-011-1021-8
    [18] GUO Yufu, WANG Jia, ZHAO Yan, 2004: Numerical Simulation of the 1999 Yangtze River Valley Heavy Rainfall Including Sensitivety Experiments with Different SSTA, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 23-33.  doi: 10.1007/BF02915677
    [19] FENG Lei, ZHANG Yaocun, 2007: Impacts of the Thermal Effects of Sub-grid Orography on the Heavy Rainfall Events Along the Yangtze River Valley in 1991, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 881-892.  doi: 10.1007/s00376-007-0881-4
    [20] LI Fang, LIN Zhongda, 2015: Improving Multi-model Ensemble Probabilistic Prediction of Yangtze River Valley Summer Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 497-504.  doi: 10.1007/s00376-014-4073-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2003
Manuscript revised: 10 May 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Water Vapor Transport Model at the Regional Boundary during the Meiyu Period

  • 1. Chinese Academy of Meteorological Sciences, Beijing 100081,Chinese Academy of Meteorological Sciences, Beijing 100081,Chinese Academy of Meteorological Sciences, Beijing 100081,North Carolina State University, Raleigh, NC 27606-8208, U.S.A.

Abstract: The water vapor transport model at the regional boundary in the Meiyu period is put forward throughdiagnostic analysis. The numerical simulation on the water vapor transport at the boundary of China inthe heavy rainfall period during June-July 1998 shows that the feature of water vapor transport in June isdifferent from that in July. The main body of the water cycle that forms the torrential rain in the Yangtze River Valley is made up of water vapor transport at the western and southern boundaries of the Chinaregion in June, whereas the water vapor flow at the western boundary in middle Tibet turns out to bethe main body of water vapor sources in July. The water vapor transport at the western boundary ofthe Tibetan Plateau and the southern boundary of China plays an important role in the torrential rainin the Yangtze River Valley. The temporal and spatial distribution characteristics of water vapor flow atthe regional boundary and their theoretical model would provide the scientific proof for the heavy rainforecasts in the Yangtze River Valley.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return