Advanced Search
Article Contents

A Numerical Case Study on a Mesoscale Convective System over the Qinghai-Xizang (Tibetan) Plateau


doi: 10.1007/BF02690797

  • A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 issimulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). Theresults obtained are inspiring and are as follows. (1) The model simulates well the largescale conditionsin which the MCS concerned is embedded, which are the well-known anticyclonic Qinghai-Xizang PlateauHigh in the upper layers and the strong thermal forcing in the lower layers. In particular, the modelcaptures the meso-α scale cyclonic vortex associated with the MCS, which can be analyzed in the 500 hPaobservational winds; and to some degree, the model reproduces even its meso-β scale substructure similarto satellite images, reflected in the model-simulated 400 hPa rainwater. On the other hand, there aresome distinct deficiencies in the simulation; for example, the simulated MCS occurs with a lag of 3 hoursand a westward deviation of 3-5° longitude. (2) The structure and evolution of the meso-α scale vortexassociated with the MCS are undescribable for upper-air sounding data. The vortex is confined to thelower troposphere under 450 hPa over the plateau and shrinks its extent with height, with a diameter of4° longitude at 500 hPa. It is within the updraft area, but with an upper-level anticyclone and downdraftover it. The vortex originates over the plateau, and does not form until the mature stage of the MCS. Itlasts for 3-6 hours. In its processes of both formation and decay, the change in geopotential height fieldis prior to that in the wind field. It follows that the vortex is closely associated with the thermal effectsover the plateau. (3) A series of sensitivity experiments are conducted to investigate the impact of varioussurface thermal forcings and other physical processes on the MCS over the plateau. The results indicatethat under the background conditions of the upper-level Qinghai-Xizang High, the MCS involved is mainlydominated by the low-level thermal forcing. The simulation described here is a good indication that itmay be possible to reproduce the MCS over the plateau under certain large-scale conditions and with theincorporation of proper thermal physics in the lower layers.
  • [1] ZHU Guofu, CHEN Shoujun, 2003: Analysis and Comparison of Mesoscale Convective Systems over the Qinghai-Xizang (Tibetan) Plateau, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 311-322.  doi: 10.1007/BF02690789
    [2] XU Zhifang, GE Wenzhong, DANG Renqing, Toshio IGUCHI, Takao TAKADA, 2003: Application of TRMM/PR Data for Numerical Simulations with Mesoscale Model MM5, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 185-193.  doi: 10.1007/s00376-003-0003-x
    [3] PING Fan, GAO Shouting, WANG Huijun, 2003: A Comparative Study of the Numerical Simulation of the 1998 Summer Flood in China by Two Kinds of Cumulus Convective Parameterized Methods, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 149-157.  doi: 10.1007/BF03342059
    [4] YANG Jing, BAO Qing, JI Duoying, GONG Daoyi, MAO Rui, ZHANG Ziyin, Seong-Joong KIM, 2014: Simulation and Causes of Eastern Antarctica Surface Cooling Related to Ozone Depletion during Austral Summer in FGOALS-s2, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1147-1156.  doi: 10.1007/s00376-014-3144-1
    [5] Anjing HUANG, Gaopeng LU, Hongbo ZHANG, Feifan LIU, Yanfeng FAN, Baoyou ZHU, Jing YANG, Zhichao WANG, 2018: Locating Parent Lightning Strokes of Sprites Observed over a Mesoscale Convective System in Shandong Province, China, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1396-1414.  doi: 10.1007/s00376-018-7306-4
    [6] Na LI, Lingkun RAN, Linna ZHANG, Shouting GAO, 2017: Potential Deformation and Its Application to the Diagnosis of Heavy Precipitation in Mesoscale Convective Systems, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 894-908.  doi: 10.1007/s00376-017-6282-4
    [7] GU Jianfeng, Qingnong XIAO, Ying-Hwa KUO, Dale M. BARKER, XUE Jishan, MA Xiaoxing, 2005: Assimilation and Simulation of Typhoon Rusa (2002) Using the WRF System, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 415-427.  doi: 10.1007/BF02918755
    [8] ZHAO Haikun, WU Liguang*, and WANG Ruifang, 2014: Decadal Variations of Intense Tropical Cyclones over the Western North Pacific during 19482010, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 57-65.  doi: 10.1007/s00376-013-3011-5
    [9] HU Dingzhu, TIAN Wenshou, XIE Fei, SHU Jianchuan, and Sandip DHOMSE, , 2014: Effects of Meridional Sea Surface Temperature Changes on Stratospheric Temperature and Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 888-900.  doi: 10.1007/s00376-013-3152-6
    [10] Hyo-Eun JI, Soon-Hwan LEE, Hwa-Woon LEE, 2013: Characteristics of Sea Breeze Front Development with Various Synoptic Conditions and Its Impact on Lower Troposphere Ozone Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1461-1478.  doi: 10.1007/s00376-013-2256-3
    [11] Liu Huaqiang, Qian Yongfu, 1999: Numerical Simulations of Intense Meiyu Rainfall in 1991 over the Changjiang and Huaihe River Valleys by a Regional Climate Model with p-б Incorporated Coordinate System, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 395-404.  doi: 10.1007/s00376-999-0018-z
    [12] Honglei ZHANG, Ming XUE, Hangfeng SHEN, Xiaofan LI, Guoqing ZHAI, 2024: Local Torrential Rainfall Event within a Mei-Yu Season Mesoscale Convective System: Importance of Back-Building Processes, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 847-863.  doi: 10.1007/s00376-023-3033-6
    [13] LIU Huaqiang, SUN Zhaobo, WANG Ju, MIN Jinzhong, 2004: A Modeling Study of the Effects of Anomalous Snow Cover over the Tibetan Plateau upon the South Asian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 964-975.  doi: 10.1007/BF02915598
    [14] DUAN Anmin, WU Guoxiong, LIANG Xiaoyun, 2008: Influence of the Tibetan Plateau on the Summer Climate Patterns over Asia in the IAP/LASG SAMIL Model, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 518-528.  doi: 10.1007/s00376-008-0518-2
    [15] Tianxue ZHENG, Yongbo TAN, Yiru WANG, 2021: Numerical Simulation to Evaluate the Effects of Upward Lightning Discharges on Thunderstorm Electrical Parameters, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 446-459.  doi: 10.1007/s00376-020-0154-z
    [16] Yang Fanglin, Yuan Chongguang, 1993: Numerical Simulation of Regional Short-Range Climate Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 335-344.  doi: 10.1007/BF02658139
    [17] Xie Zhenghui, Dai Yongjiu, Zeng Qingcun, 1999: An Unsaturated Soil Water Flow Problem and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 183-196.  doi: 10.1007/BF02973081
    [18] JIANG Yongqiang, WANG Yuan, HUANG Hong, 2012: A Study on the Dynamic Mechanism of the Formation of Mesoscale Vortex in Col Field, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1215-1226.  doi: 10.1007/s00376-012-1186-9
    [19] Chen Yuejuan, Zheng Bin, Zhang Hong, 2002: The Features of Ozone Quasi-Biennial Oscillation in Tropical Stratosphere and Its Numerical Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 777-793.  doi: 10.1007/s00376-002-0044-6
    [20] Jianjun LIU, Feimin ZHANG, Zhaoxia PU, 2017: Numerical Simulation of the Rapid Intensification of Hurricane Katrina (2005): Sensitivity to Boundary Layer Parameterization Schemes, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 482-496.  doi: 10.1007/s00376-016-6209-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 May 2003
Manuscript revised: 10 May 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Numerical Case Study on a Mesoscale Convective System over the Qinghai-Xizang (Tibetan) Plateau

  • 1. Chinese Academy of Meteorological Sciences, Beijing 100081,National key Laboratory for the Severe Storm Research LSSR, Peking University, Beijing 100871

Abstract: A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 issimulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). Theresults obtained are inspiring and are as follows. (1) The model simulates well the largescale conditionsin which the MCS concerned is embedded, which are the well-known anticyclonic Qinghai-Xizang PlateauHigh in the upper layers and the strong thermal forcing in the lower layers. In particular, the modelcaptures the meso-α scale cyclonic vortex associated with the MCS, which can be analyzed in the 500 hPaobservational winds; and to some degree, the model reproduces even its meso-β scale substructure similarto satellite images, reflected in the model-simulated 400 hPa rainwater. On the other hand, there aresome distinct deficiencies in the simulation; for example, the simulated MCS occurs with a lag of 3 hoursand a westward deviation of 3-5° longitude. (2) The structure and evolution of the meso-α scale vortexassociated with the MCS are undescribable for upper-air sounding data. The vortex is confined to thelower troposphere under 450 hPa over the plateau and shrinks its extent with height, with a diameter of4° longitude at 500 hPa. It is within the updraft area, but with an upper-level anticyclone and downdraftover it. The vortex originates over the plateau, and does not form until the mature stage of the MCS. Itlasts for 3-6 hours. In its processes of both formation and decay, the change in geopotential height fieldis prior to that in the wind field. It follows that the vortex is closely associated with the thermal effectsover the plateau. (3) A series of sensitivity experiments are conducted to investigate the impact of varioussurface thermal forcings and other physical processes on the MCS over the plateau. The results indicatethat under the background conditions of the upper-level Qinghai-Xizang High, the MCS involved is mainlydominated by the low-level thermal forcing. The simulation described here is a good indication that itmay be possible to reproduce the MCS over the plateau under certain large-scale conditions and with theincorporation of proper thermal physics in the lower layers.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return