Advanced Search
Article Contents

The Relation between Atmospheric Intraseasonal Oscillation and Summer Severe Flood and Drought in the Changjiang-Huaihe River Basin


doi: 10.1007/BF02915497

  • The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of theChangjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data inChina. The results show that the upper-level (200 hPa) ISO pattern for severe flood (drought) is charac-terized by an anticyclonic (cyclonic) circulation over the southern Tibetan Plateau and a cyclonic (anti-cyclonic) circulation over the northern Tibetan Plateau. The lower-level (850 hPa) ISO pattern is char-acterized by an anticyclonic (cyclonic) circulation over the area south of the Changjiang River, the SouthChina Sea, and the Western Pacific, and a cyclonic (anticyclonic) circulation from the area north of theChangjiang River to Japan. These low-level ISO circulation patterns are the first modes of the ISO windfield according to the vector EOF expansion with stronger amplitude of the EOF1 time coefficient in se-vere flood years than in severe drought years. The analyses also reveal that at 500 hPa and 200 hPa,the atmospheric ISO activity over the Changjiang-Huaihe River basin, North China, and the middle-highlatitudes north of China is stronger for severe flood than for severe drought. The ISO meridional windover the middle-high latitude regions can propagate southwards and meet with the northward propagatingISO meridional wind from lower latitude regions over the Changjiang-Huaihe River Basin during severeflood years, but not during severe drought years.
  • [1] LU Riyu*, DONG Huilin, SU Qin, and Hui DING, 2014: The 30-60-day Intraseasonal Oscillations over the Subtropical Western North Pacific during the Summer of 1998, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1-7.  doi: 10.1007/s00376-013-3019-x
    [2] Li Chongyin, Li Guilong, 1997: Evolution of Intraseasonal Oscillation over the Tropical Western Pacific / South China Sea and Its Effect to the Summer Precipitation in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 246-254.  doi: 10.1007/s00376-997-0023-z
    [3] LI Chongyin, HU Ruijin, YANG Hui, 2005: Intraseasonal Oscillation in the Tropical Indian Ocean, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 617-624.  doi: 10.1007/BF02918705
    [4] HU Ruijin, WEI Meng, 2013: Intraseasonal Oscillation in Global Ocean Temperature Inferred from Argo, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 29-40.  doi: 10.1007/s00376-012-2045-4
    [5] Xiaomeng SONG, Renhe ZHANG, Xinyao RONG, 2019: Influence of Intraseasonal Oscillation on the Asymmetric Decays of El Niño and La Niña, ADVANCES IN ATMOSPHERIC SCIENCES, , 779-792.  doi: 10.1007/s00376-019-9029-6
    [6] Li Chongyin, Han-Ru Cho, Jough-Tai Wang, 2002: CISK Kelvin Wave with Evaporation-Wind Feedback and Air-Sea Interaction A Further Study of Tropical Intraseasonal Oscillation Mechanism, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 379-390.  doi: 10.1007/s00376-002-0073-1
    [7] Chen Xingyue, Wang Huijun, Xue Feng, Zeng Qingcun, 2001: Intraseasonal Oscillation: the Global Coincidence and Its Relationship with ENSO Cycle, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 445-453.  doi: 10.1007/BF02919323
    [8] Wen ZHOU, Richard C. Y. LI, Eric C. H. CHOW, 2017: Intraseasonal Variation of Visibility in Hong Kong, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 26-38.  doi: 10.1007/s00376-016-6056-4
    [9] Li Wei, Yu Rucong, Liu Hailong, Yu Yongqiang, 2001: Impacts of Diurnal Cycle of SST on the Intraseasonal Variation of Surface Heat Flux over the Western PacificWarm Pool, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 793-806.
    [10] Junqi LIU, Riyu LU, 2022: Different Impacts of Intraseasonal Oscillations on Precipitation in Southeast China between Early and Late Summers, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1885-1896.  doi: 10.1007/s00376-022-1347-4
    [11] SHEN Xueshun, Akimasa SUMI, 2005: A High Resolution Nonhydrostatic Tropical Atmospheric Model and Its Performance, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 30-38.  doi: 10.1007/BF02930867
    [12] ZHANG Zuqiang, ZHANG Renhe, Song YANG, 2007: Roles of Multi-Scale Disturbances over the Tropical North Pacific in the Turnabout of 1997--98 El Nino, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 581-590.  doi: 10.1007/s00376-007-0581-0
    [13] WANG Huijun, HAN Jinping, ZHANG Qingyun, SUN Jianqi, JIANG Dabang, 2007: Brief Review of Some CLIVAR-Related Studies in China, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 1037-1048.  doi: 10.1007/s00376-007-1037-2
    [14] YANG Jing, BAO Qing, WANG Xiaocong, ZHOU Tianjun, 2012: The Tropical Intraseasonal Oscillation in SAMIL Coupled and Uncoupled General Circulation Models, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 529-543.  doi: 10.1007/s00376-011-1087-3
    [15] Yuli ZHANG, Chuanxi LIU, Yi LIU, Rui YANG, 2019: Intraseasonal Oscillation of Tropospheric Ozone over the Indian Summer Monsoon Region, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 417-430.  doi: 10.1007/s00376-018-8113-7
    [16] SUN Ying, DING Yihui, 2008: Effects of Intraseasonal Oscillation on the Anomalous East Asian Summer Monsoon During 1999, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 279-296.  doi: 10.1007/s00376-008-0279-y
    [17] Lin Chunyu, 1985: STABILIZATION OF SUMMER MONSOON IN MIDDLE AND LOWER REACHES OF THE CHANGJIANG RIVER AND SEASONAL TRANSITION OF EAST-ASIAN CIRCULATION PATTERN IN EARLY SUMMER, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 376-384.  doi: 10.1007/BF02677254
    [18] Li Chongyin, Long Zhenxia, Zhang Qingyun, 2001: Strong/Weak Summer Monsoon Activity over the South China Sea and Atmospheric Intraseasonal Oscillation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1146-1160.  doi: 10.1007/s00376-001-0029-x
    [19] ZHAO Chongbo, ZHOU Tianjun, SONG Lianchun, REN Hongli, 2014: The Boreal Summer Intraseasonal Oscillation Simulated by Four Chinese AGCMs Participating in the CMIP5 Project, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 1167-1180.  doi: 10.1007/s00376-014-3211-7
    [20] Zheng HE, Pangchi HSU, Xiangwen LIU, Tongwen WU, Yingxia GAO, 2019: Factors Limiting the Forecast Skill of the Boreal Summer Intraseasonal Oscillation in a Subseasonal-to-Seasonal Model, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 104-118.  doi: 10.1007/s00376-018-7242-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2003
Manuscript revised: 10 July 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Relation between Atmospheric Intraseasonal Oscillation and Summer Severe Flood and Drought in the Changjiang-Huaihe River Basin

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of theChangjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data inChina. The results show that the upper-level (200 hPa) ISO pattern for severe flood (drought) is charac-terized by an anticyclonic (cyclonic) circulation over the southern Tibetan Plateau and a cyclonic (anti-cyclonic) circulation over the northern Tibetan Plateau. The lower-level (850 hPa) ISO pattern is char-acterized by an anticyclonic (cyclonic) circulation over the area south of the Changjiang River, the SouthChina Sea, and the Western Pacific, and a cyclonic (anticyclonic) circulation from the area north of theChangjiang River to Japan. These low-level ISO circulation patterns are the first modes of the ISO windfield according to the vector EOF expansion with stronger amplitude of the EOF1 time coefficient in se-vere flood years than in severe drought years. The analyses also reveal that at 500 hPa and 200 hPa,the atmospheric ISO activity over the Changjiang-Huaihe River basin, North China, and the middle-highlatitudes north of China is stronger for severe flood than for severe drought. The ISO meridional windover the middle-high latitude regions can propagate southwards and meet with the northward propagatingISO meridional wind from lower latitude regions over the Changjiang-Huaihe River Basin during severeflood years, but not during severe drought years.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return