Advanced Search
Article Contents

The 3-Hour-Interval Prediction of Ground-Level Temperature in South Korea Using Dynamic Linear Models


doi: 10.1007/BF02915500

  • The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea(38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematicerror of numerical model forecasts. Numerical model forecasts and observations are used as input values ofthe DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecastswith RMSE and bias, the DLM is useful to improve the accuracy of prediction.
  • [1] Keon-Tae SOHN, H. Joe KWON, Ae-Sook SUH, 2003: Prediction of Typhoon Tracks Using Dynamic Linear Models, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 379-384.  doi: 10.1007/BF02690796
    [2] XUE Haile, SHEN Xueshun, CHOU Jifan, 2015: An Online Model Correction Method Based on an Inverse Problem: Part II——Systematic Model Error Correction, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1493-1503.  doi: 10.1007/s00376-015-4262-0
    [3] XIA Zhiye, CHEN Hongbin, XU Lisheng, WANG Yongqian, 2015: Extended Range (10-30 Days) Heavy Rain Forecasting Study Based on a Nonlinear Cross-Prediction Error Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1583-1591.  doi: 10.1007/s00376-015-4252-2
    [4] LI Shan, RONG Xingyao, LIU Yun, LIU Zhengyu, Klaus FRAEDRICH, 2013: Dynamic Analogue Initialization for Ensemble Forecasting, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1406-1420.  doi: 10.1007/s00376-012-2244-z
    [5] Runhua YANG, Jing GUO, Lars Peter RIISH?JGAARD, 2006: Application of an Error Statistics Estimation Method to the PSAS Forecast Error Covariance Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 33-44.  doi: 10.1007/s00376-006-0004-7
    [6] Jingjing LIANG, Zongliang YANG, Peirong LIN, 2019: Systematic Hydrological Evaluation of the Noah-MP Land Surface Model over China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1171-1187.  doi: 10.1007/s00376-019-9016-y
    [7] Chen Jiabin, Ji Liren, Wu Wanli, 1987: DESIGN AND TEST OF AN IMPROVED SCHEME FOR GLOBAL SPECTRAL MODEL WITH REDUCED TRUNCATION ERROR, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 156-168.  doi: 10.1007/BF02677062
    [8] Bohua Huang, James L. Kinter III, Paul S. Schopf, 2002: Ocean Data Assimilation Using Intermittent Analyses and Continuous Model Error Correction, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 965-992.  doi: 10.1007/s00376-002-0059-z
    [9] Eun-Han KWON, Jinlong LI, B. J. SOHN, Elisabeth WEISZ, 2012: Use of Total Precipitable Water Classification of A Priori Error and Quality Control in Atmospheric Temperature and Water Vapor Sounding Retrieval, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 263-273.  doi: 10.1007/s00376-011-1119-z
    [10] Ting WANG, Jianfang FEI, Xiaoping CHENG, Xiaogang HUANG, Jian ZHONG, 2018: Estimating the Correlated Observation-Error Characteristics of the Chinese FengYun Microwave Temperature Sounder and Microwave Humidity Sounder, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1428-1441.  doi: 10.1007/s00376-018-8014-9
    [11] Jin FENG, Min CHEN, Yanjie LI, Jiqin ZHONG, 2021: An Implementation of Full Cycle Strategy Using Dynamic Blending for Rapid Refresh Short-range Weather Forecasting in China, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 943-956.  doi: 10.1007/s00376-021-0316-7
    [12] Xu Youping, Xia Daqing, Qian Yueying, 1998: The Water-Bearing Numerical Model and Its Operational Forecasting Experiments Part II: The Operational Forecasting Experiments, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 321-336.  doi: 10.1007/s00376-998-0004-x
    [13] Xiaqiong ZHOU, Johnny C. L. CHEN, 2006: Ensemble Forecasting of Tropical Cyclone Motion Using a Baroclinic Model, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 342-354.  doi: 10.1007/s00376-006-0342-5
    [14] Yan Shaojin, Peng Yongqing, Guo guang, 1995: Neuroid BP-type Model Applied to the Study of Monthly Rainfall Forecasting, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 335-342.  doi: 10.1007/BF02656982
    [15] SUN Jianqi, Joong Bae AHN, 2011: A GCM-Based Forecasting Model for the Landfall of Tropical Cyclones in China, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1049-1055.  doi: 10.1007/s00376-011-0122-8
    [16] DUAN Wansuo, ZHANG Rui, 2010: Is Model Parameter Error Related to a Significant Spring Predictability Barrier for El Nino events? Results from a Theoretical Model, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1003-1013.  doi: 10.1007/s00376-009-9166-4
    [17] XUE Haile, SHEN Xueshun, CHOU Jifan, 2015: An Online Model Correction Method Based on an Inverse Problem: Part I——Model Error Estimation by Iteration, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1329-1340.  doi: 10.1007/s00376-015-4261-1
    [18] Qin XU, Binbin ZHOU, 2003: Retrieving Soil Water Contents from Soil Temperature Measurements by Using Linear Regression, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 849-858.  doi: 10.1007/BF02915509
    [19] Li Jun, Zhou Fengxian, Zeng Qingcun, 1994: Simultaneous Non-linear Retrieval of Atmospheric Temperature and Absorbing Constituent Profiles from Satellite Infrared Sounder Radiances, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 128-138.  doi: 10.1007/BF02666541
    [20] Mu Mu, Guo Huan, Wang Jiafeng, LiYong, 2000: The Impact of Nonlinear Stability and Instability on the Validity of the Tangent Linear Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 375-390.  doi: 10.1007/s00376-000-0030-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 July 2003
Manuscript revised: 10 July 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The 3-Hour-Interval Prediction of Ground-Level Temperature in South Korea Using Dynamic Linear Models

  • 1. Dept. of Statistics, Pusan National University, 30 Jangjeon-dong, Geumjung-gu, Pusan 609-735, Korea,Korea Meteorological Administration, 460-18 Shindaebang-dong, Tongjak-gu, Seoul 156-720, Korea,Korea Meteorological Administration, 460-18 Shindaebang-dong, Tongjak-gu, Seoul 156-720, Korea

Abstract: The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea(38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematicerror of numerical model forecasts. Numerical model forecasts and observations are used as input values ofthe DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecastswith RMSE and bias, the DLM is useful to improve the accuracy of prediction.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return