Advanced Search
Article Contents

Atmospheric Anomalies Related to Interdecadal Variability of SST in the North Pacific


doi: 10.1007/BF02915510

  • Anomalous patterns of the atmospheric circulation and climate are studied corresponding to the two basic interdecadal variation modes of sea surface temperature (SST) in the North Pacific, namely, the 25-35-year mode and the 7-10-year mode. Results clearly indicate that corresponding to the positive and negative phases of the interdecadal modes of SST anomaly (SSTA) in the North Pacific, the anomalous patterns of the atmospheric circulation and climate are approximately out of phase, fully illustrating the important role of the interdecadal modes of SST. Since the two interdecadal modes of SSTA in the North Pacific have similar horizontal structures, their impacts on the atmospheric circulation and climate are also analogous. The impact of the interdecadal modes of the North Pacific SST on the atmospheric circulation is barotropic at middle latitudes and baroclinic in tropical regions.
  • [1] Wu Renguang, Chen Lieting, 1995: Interannual Fluctuations of Surface Air Temperature over North America and Its Relationship to the North Pacific SST Anomaly, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 20-28.  doi: 10.1007/BF02661284
    [2] Xiang LI, Yiyong LUO, 2016: Response of North Pacific Eastern Subtropical Mode Water to Greenhouse Gas Versus Aerosol Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 522-532.  doi: 10.1007/s00376-015-5092-9
    [3] WANG Dongxiao, WANG Jia, Lixin WU, Zhengyu LIU, 2003: Regime Shifts in the North Pacific Simulated by a COADS-driven Isopycnal Model, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 743-754.  doi: 10.1007/BF02915399
    [4] LIU Qinyu, WEN Na, YU Yongqiang, 2006: The Role of the Kuroshio in the Winter North Pacific Ocean-Atmosphere Interaction: Comparison of a Coupled Model and Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 181-189.  doi: 10.1007/s00376-006-0181-4
    [5] Guanghui ZHOU, Rong-Hua ZHANG, 2022: Structure and Evolution of Decadal Spiciness Variability in the North Pacific during 2004–20, Revealed from Argo Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 953-966.  doi: 10.1007/s00376-021-1358-6
    [6] Yao HA, Zhong ZHONG, Haikun ZHAO, Yimin ZHU, Yao YAO, Yijia HU, 2022: A Climatological Perspective on Extratropical Synoptic-Scale Transient Eddy Activity Response to Western Pacific Tropical Cyclones, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 333-343.  doi: 10.1007/s00376-021-0375-9
    [7] James E. OVERLAND, Muyin WANG, Thomas J. BALLINGER, 2018: Recent Increased Warming of the Alaskan Marine Arctic Due to Midlatitude Linkages, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 75-84.  doi: 10.1007/s00376-017-7026-1
    [8] ZHU Yali, WANG Huijun, 2010: The Relationship between the Aleutian Low and the Australian Summer Monsoon at Interannual Time Scales, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 177-184.  doi: 10.1007/s00376-009-8144-1
    [9] Xia ZHAO, Guang YANG, Jing WANG, 2018: Persistence of Summer Sea Surface Temperature Anomalies in the Midlatitude North Pacific and Its Interdecadal Variability, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 868-880.  doi: 10.1007/s00376-017-7184-1
    [10] Xue Feng, 2001: Interannual to Interdecadal Variation of East Asian Summer Monsoon and its Association with the Global Atmospheric Circulation and Sea Surface Temperature, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 567-575.  doi: 10.1007/s00376-001-0045-x
    [11] LI Gang*, LI Chongyin, TAN Yanke, and BAI Tao, 2014: The Interdecadal Changes of South Pacific Sea Surface Temperature in the Mid-1990s and Their Connections with ENSO, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 66-84.  doi: 10.1007/s00376-013-2280-3
    [12] Wu Xiangding, J. M. Lough, 1987: ESTIMATING NORTH PACIFIC SUMMER SEA-LEVEL PRES-SURE BACK TO 1600 USING PROXY CLIMATE RECORDS FROM CHINA AND NORTH AMERICA, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 74-84.  doi: 10.1007/BF02656663
    [13] ZHAO Xia, LI Jianping, ZHANG Wenjun, 2012: Summer Persistence Barrier of Sea Surface Temperature Anomalies in the Central Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1159-1173.  doi: 10.1007/s00376-012-1253-2
    [14] Yan XIA, Yongyun HU, Jiankai ZHANG, Fei XIE, Wenshou TIAN, 2021: Record Arctic Ozone Loss in Spring 2020 is Likely Caused by North Pacific Warm Sea Surface Temperature Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1723-1736.  doi: 10.1007/s00376-021-0359-9
    [15] Tao WANG, Qiang FU, Wenshou TIAN, Hongwen LIU, Yifeng PENG, Fei XIE, Hongying TIAN, Jiali LUO, 2022: The Influence of Meridional Variation in North Pacific Sea Surface Temperature Anomalies on the Arctic Stratospheric Polar Vortex, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-022-2033-2
    [16] WANG Hai, and LIU Qinyu, 2014: Boreal Winter Rainfall Anomaly over the Tropical Indo-Pacific and Its Effect on Northern Hemisphere Atmospheric Circulation in CMIP5 Models, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 916-925.  doi: 10.1007/s00376-013-3174-0
    [17] Shangfeng CHEN, Linye SONG, 2018: Impact of the Winter North Pacific Oscillation on the Surface Air Temperature over Eurasia and North America: Sensitivity to the Index Definition, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 702-712.  doi: 10.1007/s00376-017-7111-5
    [18] Minghao YANG, Chongyin LI, Xin LI, Xiong CHEN, Lifeng LI, 2022: The Linkage between Midwinter Suppression of the North Pacific Storm Track and Atmospheric Circulation Features in the Northern Hemisphere, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 502-518.  doi: 10.1007/s00376-021-1145-4
    [19] Deliang CHEN, Anders OMSTEDT, 2005: Climate-Induced Variability of Sea Level in Stockholm: Influence of Air Temperature and Atmospheric Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 655-664.  doi: 10.1007/BF02918709
    [20] HU Dingzhu, TIAN Wenshou, XIE Fei, SHU Jianchuan, and Sandip DHOMSE, , 2014: Effects of Meridional Sea Surface Temperature Changes on Stratospheric Temperature and Circulation, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 888-900.  doi: 10.1007/s00376-013-3152-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2003
Manuscript revised: 10 November 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Atmospheric Anomalies Related to Interdecadal Variability of SST in the North Pacific

  • 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract: Anomalous patterns of the atmospheric circulation and climate are studied corresponding to the two basic interdecadal variation modes of sea surface temperature (SST) in the North Pacific, namely, the 25-35-year mode and the 7-10-year mode. Results clearly indicate that corresponding to the positive and negative phases of the interdecadal modes of SST anomaly (SSTA) in the North Pacific, the anomalous patterns of the atmospheric circulation and climate are approximately out of phase, fully illustrating the important role of the interdecadal modes of SST. Since the two interdecadal modes of SSTA in the North Pacific have similar horizontal structures, their impacts on the atmospheric circulation and climate are also analogous. The impact of the interdecadal modes of the North Pacific SST on the atmospheric circulation is barotropic at middle latitudes and baroclinic in tropical regions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return