Advanced Search
Article Contents

A Linear Diagnostic Equation for the Nonhydrostatic Vertical Motion W in Severe Storms


doi: 10.1007/BF02915511

  • A linear diagnostic equation for the nonhydrostatic vertical motion W in severe storms is derived in the Cartesian-earth-spherical coordinates. This W diagnostic equation reveals explicitly how forcing factors work together to exert influence on the nonhydrostatic vertical motion in severe storms. If high-resolution global data are available in Cartesian coordinates with guaranteed quality, the Lax-Crank-Nicolson scheme and the Thomas algorithm might provide a promising numerical solution of this diagnostic equation. As a result, quantitative analyses are expected for the evolution mechanisms of severe storms.
  • [1] QIAN Yu-Kun, LIANG Chang-Xia, LIANG Qiaoqian, LIN Liangxun, YUAN Zhuojian, 2011: On the Forced Tangentially-Averaged Radial-Vertical Circulation within Vortices. Part II: The Transformation of Tropical Storm Haima (2004), ADVANCES IN ATMOSPHERIC SCIENCES, 28, 1143-1158.  doi: 10.1007/s00376-010-0060-x
    [2] Lingkun RAN, Changsheng CHEN, 2016: Diagnosis of the Forcing of Inertial-gravity Waves in a Severe Convection System, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1271-1284.  doi: 10.1007/s00376-016-5292-y
    [3] Fei Shiqiang, Tan Zhemin, 2001: On the Helicity Dynamics of Severe Convective Storms, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 67-86.  doi: 10.1007/s00376-001-0005-5
    [4] Ni Yunqi, Zhang Qin, Li Yuedong, 1991: A Numerical Study of the Mechanism for the Effect of Northern Winter Arctic Ice Cover on the Global Short-Range Climate Evolution, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 489-498.  doi: 10.1007/BF02919271
    [5] Zhu Zhengxin, Xiao Jie, 1986: NUMERICAL EXPERIMENTS ON DYNAMIC MECHANISM OF BLOCKING, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 105-114.  doi: 10.1007/BF02680049
    [6] Liu Yudi, Ji Zhongzhen, Wang Bin, 2002: Study on Computational Properties of Several Vertical Grids with a Nonhydrostatic Model in Comparison to Analytical Solutions, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 528-543.  doi: 10.1007/s00376-002-0084-y
    [7] Tian Yongxiang, Luo Zhexian, 1994: Vertical Structure of Beta Gyres and Its Effect on Tropical Cyclone Motion, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 43-50.  doi: 10.1007/BF02656992
    [8] WU Xian, FEI Jianfang, HUANG Xiaogang, ZHANG Xiang, CHENG Xiaoping, REN Jianqi, 2012: A Numerical Study of the Interaction between Two Simultaneous Storms: Goni and Morakot in September 2009, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 561-574.  doi: 10.1007/s00376-011-1014-7
    [9] CHEN Guanghua, 2013: A Numerical Study on the Effect of an Extratropical Cyclone on the Evolution of a Midlatitude Front, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1433-1448.  doi: 10.1007/s00376-012-2191-8
    [10] Yi Zengxin, T. Warn, 1987: A NUMERICAL METHOD FOR SOLVING THE EVOLUTION EQUATION OF SOLITARY ROSSBY WAVES ON A WEAK SHEAR, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 43-54.  doi: 10.1007/BF02656660
    [11] Sun Tingkai, Tan Zhemin, 2001: Numerical Simulation Study for the Structure and Evolution of Tropical Squall Line, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 117-138.  doi: 10.1007/s00376-001-0008-2
    [12] LI Lun, ZHANG Renhe, WEN Min, 2011: Diagnostic Analysis of the Evolution Mechanism for a Vortex over the Tibetan Plateau in June 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 797-808.  doi: 10.1007/s00376-010-0027-y
    [13] Shou Shaowen, Li Shenshen, 1991: Diagnosis of Kinetic Energy Balance of a Decaying Onland Typhoon, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 479-488.  doi: 10.1007/BF02919270
    [14] Zhang Daizhou, Tanaka Hiroshi, Qin Yu, 1996: Internal Gravity Waves Generated by a Local Thermal Source in an Irrotational Zonal-Vertical Plane: Numerical Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 124-132.  doi: 10.1007/BF02657033
    [15] WANG Donghai, Xiaofan LI, Wei-Kuo TAO, 2010: Responses of Vertical Structures in Convective and Stratiform Regions to Large-Scale Forcing during the Landfall of Severe Tropical Storm Bilis (2006), ADVANCES IN ATMOSPHERIC SCIENCES, 27, 33-46.  doi: 10.1007/s00376-009-8139-y
    [16] He Jinhai, Zhou Bing, Wen Min, Li Feng, 2001: Vertical Circulation Structure, lnterannual Variation Features and Variation Mechanism of Western Pacific Subtropical High, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 497-510.  doi: 10.1007/s00376-001-0040-2
    [17] Ni Yunqi, Lin Yuanbi, 1990: Numerical Study for Characteristic Change of Asian Summer Monsoon Circulation and Its Influence Mechanism during the El Nino Period, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 320-330.  doi: 10.1007/BF03179764
    [18] ZHAO Bin, ZHONG Qing, 2010: The Development of a Nonhydrostatic Global Spectral Model, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 676-684.  doi: 10.1007/s00376-009-9080-9
    [19] Kong Fanyou, Huang Meiyuan, Xu Huaying, 1993: Three-Dimensional Numerical Simulations of the Effects of a Cold Water Surface on the Evolution and Propagation of Thunderstorms, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 261-272.  doi: 10.1007/BF02658132
    [20] Shi Yong, Jiang Weimei, 1998: The Numerical Simulation on the PBL Structure and Its Evolution over Small-Scale Concave Terrain, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 99-106.  doi: 10.1007/s00376-998-0021-9

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 November 2003
Manuscript revised: 10 November 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

A Linear Diagnostic Equation for the Nonhydrostatic Vertical Motion W in Severe Storms

  • 1. Center of Monsoon and Environment, Sun Yat-Sen University, Guangzhou, Guangdong 510275,Center of Monsoon and Environment, Sun Yat-Sen University, Guangzhou, Guangdong 510275

Abstract: A linear diagnostic equation for the nonhydrostatic vertical motion W in severe storms is derived in the Cartesian-earth-spherical coordinates. This W diagnostic equation reveals explicitly how forcing factors work together to exert influence on the nonhydrostatic vertical motion in severe storms. If high-resolution global data are available in Cartesian coordinates with guaranteed quality, the Lax-Crank-Nicolson scheme and the Thomas algorithm might provide a promising numerical solution of this diagnostic equation. As a result, quantitative analyses are expected for the evolution mechanisms of severe storms.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return