Advanced Search
Article Contents

Numerical Simulation of the 1999 Yangtze River Valley Heavy Rainfall Including Sensitivety Experiments with Different SSTA


doi: 10.1007/BF02915677

  • With the IAP/LASG GOALS model,the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST).Comparing the simulations of 1999 with the corresponding ones of 1998 and the sensitivity experiments with different sea surface temperature anomalies (SSTA) at different ocean regions,the relationships between the floods in the Yangtze River valley and the SSTA in the Pacific and Indian Oceans are studied.The results show that the positive SSTAin the tropical Indian Ocean are a major contributor to the heavy rainfall and may be a very important index to predict the heavy rainfall over the Yangtze River valley in the summer.The simulations also show that the relationships between the SSTA in the tropical eastern Pacific and the heavy rainfall in the Yangtze River valley are very complicated,and the heavy rainfall in the Yangtze River valley can occur in both a decaying and an intensifying El Ninio event and also in a La Nina event.However,the different SSTA of different periods in the above three cases play different parts.
  • [1] WANG Shuzhou, YU Entao, WANG Huijun, 2012: A Simulation Study of a Heavy Rainfall Process over the Yangtze River Valley Using the Two-Way Nesting Approach, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 731-743.  doi: 10.1007/s00376-012-1176-y
    [2] FENG Lei, ZHANG Yaocun, 2007: Impacts of the Thermal Effects of Sub-grid Orography on the Heavy Rainfall Events Along the Yangtze River Valley in 1991, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 881-892.  doi: 10.1007/s00376-007-0881-4
    [3] TANG Yanbing, ZHAO Lu, GAO Kun, 2009: Correlation Analysis of Persistent Heavy Rainfall Events in the Vicinity of the Yangtze River Valley and Global Outgoing Longwave Radiation in the Preceding Month, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1169-1180.  doi: 10.1007/s00376-009-8006-x
    [4] Guo Yufu, Zhao Yan, Wang Jia, 2002: Numerical Simulation of the Relationships between the 1998 Yangtze River Valley Floods and SST Anomalies, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 391-404.  doi: 10.1007/s00376-002-0074-0
    [5] LIU Ge, WU Renguang, SUN Shuqing, WANG Huimei, 2015: Synergistic Contribution of Precipitation Anomalies over Northwestern India and the South China Sea to High Temperature over the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1255-1265.  doi: 10.1007/s00376-015-4280-y
    [6] XIONG Zhe, WANG Shuyu, ZENG Zhaomei, FU Congbin, 2003: Analysis of Simulated Heavy Rain over the Yangtze River Valley During 11-30 June 1998 Using RIEMS, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 815-824.  doi: 10.1007/BF02915407
    [7] WANG Xin, WANG Dongxiao, ZHOU Wen, LI Chongyin, 2012: Interdecadal Modulation of the Influence of La Nina Events on Mei-yu Rainfall over the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 157-168.  doi: 10.1007/s00376-011-1021-8
    [8] LI Fang, LIN Zhongda, 2015: Improving Multi-model Ensemble Probabilistic Prediction of Yangtze River Valley Summer Rainfall, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 497-504.  doi: 10.1007/s00376-014-4073-8
    [9] HU Kaiming, HUANG Gang, QU Xia, HUANG Ronghui, 2012: The Impact of Indian Ocean Variability on High Temperature Extremes across the Southern Yangtze River Valley in Late Summer, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 91-100.  doi: 10.1007/s00376-011-0209-2
    [10] Cheng Minghu, He Huizhong, Mao Dongyan, Qi Yanjun, Cui Zhehu, Zhou Fengxian, 2001: Study of 1998 Heavy Rainfall over the Yangtze River Basin Using TRMM Data, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 387-396.  doi: 10.1007/BF02919317
    [11] Yang ZHAO, Xiangde XU, Bin CHEN, Yinjun Wang, 2016: The Upstream "Strong Signals" of the Water Vapor Transport over the Tibetan Plateau during a Heavy Rainfall Event in the Yangtze River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1343-1350.  doi: 10.1007/s00376-016-6118-7
    [12] Wei Helin, Wang Wei-Chyung, 1998: A Regional Climate Model Simulation of Summer Monsoon over East Asia: A Case Study of 1991 Flood in Yangtze-Huai River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 489-509.  doi: 10.1007/s00376-998-0027-3
    [13] Wu Renguang, Chen Lieting, 1998: Decadal Variation of Summer Rainfall in the Yangtze-Huaihe River Valley and Its Relationship to Atmospheric Circulation Anomalies over East Asia and Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 15, 510-522.  doi: 10.1007/s00376-998-0028-2
    [14] Yuanchun ZHANG, Jianhua SUN, Shenming FU, 2017: Main Energy Paths and Energy Cascade Processes of the Two Types of Persistent Heavy Rainfall Events over the Yangtze River-Huaihe River Basin, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 129-143.  doi: 10.1007/s00376-016-6117-8
    [15] Chaofan LI, Wei CHEN, Xiaowei HONG, Riyu LU, 2017: Why Was the Strengthening of Rainfall in Summer over the Yangtze River Valley in 2016 Less Pronounced than that in 1998 under Similar Preceding El Niño Events?——Role of Midlatitude Circulation in August, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1290-1300.  doi: 10.1007/s00376-017-7003-8
    [16] HONG Jieli, LIU Yimin, 2012: Contrasts of Atmospheric Circulation and Associated Tropical Convection between Huaihe River Valley and Yangtze River Valley Mei-yu Flooding, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 755-768.  doi: 10.1007/s00376-012-1217-6
    [17] Ji-Hyun HA, Hyung-Woo KIM, Dong-Kyou LEE, 2011: Observation and Numerical Simulations with Radar and Surface Data Assimilation for Heavy Rainfall over Central Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 573-590.  doi: 10.1007/s00376-010-0035-y
    [18] NIU Tao, WANG Jizhi, YANG Yuanqin, LIU Hongli, CHEN Miao, LIU Jiyan, 2013: Development of a Meteorological and Hydrological Coupling Index for Droughts and Floods along the Yangtze River Valley of China, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1653-1662.  doi: 10.1007/s00376-013-2303-0
    [19] Sun Bomin, Sun Shuqing, 1994: The Analysis on the Features of the Atmospheric Circulation in Preceding Winters for the Summer Drought and Flooding in the Yangtze and Huaihe River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 79-90.  doi: 10.1007/BF02656997
    [20] Yang Hui, 2001: Anomalous Atmospheric Circulation, Heat Sources and Moisture Sinks in Relation to Great Precipitation Anomalies in the Yangtze River Valley, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 972-983.

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2004
Manuscript revised: 10 January 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Numerical Simulation of the 1999 Yangtze River Valley Heavy Rainfall Including Sensitivety Experiments with Different SSTA

  • 1. LASG,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,LASG,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,LASG,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

Abstract: With the IAP/LASG GOALS model,the heavy rainfall of the summer of 1999 in the Yangtze River valley is simulated with observational sea surface temperature (SST).Comparing the simulations of 1999 with the corresponding ones of 1998 and the sensitivity experiments with different sea surface temperature anomalies (SSTA) at different ocean regions,the relationships between the floods in the Yangtze River valley and the SSTA in the Pacific and Indian Oceans are studied.The results show that the positive SSTAin the tropical Indian Ocean are a major contributor to the heavy rainfall and may be a very important index to predict the heavy rainfall over the Yangtze River valley in the summer.The simulations also show that the relationships between the SSTA in the tropical eastern Pacific and the heavy rainfall in the Yangtze River valley are very complicated,and the heavy rainfall in the Yangtze River valley can occur in both a decaying and an intensifying El Ninio event and also in a La Nina event.However,the different SSTA of different periods in the above three cases play different parts.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return