Advanced Search
Article Contents

Parallel Computing of a Variational Data Assimilation Model for GPS/MET Observation Using the Ray-Tracing Method


doi: 10.1007/BF02915708

  • The Spectral Statistical Interpolation (SSI) analysis system of NCEP is used to assimilate meteorological data from the Global Positioning Satellite System (GPS/MET) refraction angles with the variational technique. Verified by radiosonde, including GPS/MET observations into the analysis makes an overall improvement to the analysis variables of temperature, winds, and water vapor. However, the variational model with the ray-tracing method is quite expensive for numerical weather prediction and climate research. For example, about 4 000 GPS/MET refraction angles need to be assimilated to produce an ideal global analysis. Just one iteration of minimization will take more than 24 hours CPU time on the NCEP's Gray C90 computer. Although efforts have been taken to reduce the computational cost, it is still prohibitive for operational data assimilation. In this paper, a parallel version of the three-dimensional variational data assimilation model of GPS/MET occultation measurement suitable for massive parallel processors architectures is developed. The divide-and-conquer strategy is used to achieve parallelism and is implemented by message passing. The authors present the principles for the code's design and examine the performance on the state-of-the-art parallel computers in China. The results show that this parallel model scales favorably as the number of processors is increased. With the Memory-IO technique implemented by the author, the wall clock time per iteration used for assimilating 1420 refraction angles is reduced from 45 s to 12 s using 1420 processors. This suggests that the new parallelized code has the potential to be useful in numerical weather prediction (NWP) and climate studies.
  • [1] Bi Xunqiang, 1997: Parallel Computing of a Climate Model on the Dawn 1000 by Domain Decomposition Method, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 569-572.  doi: 10.1007/s00376-997-0075-0
    [2] Zhu Keyun, 2001: On the 4D Variational Data Assimilation with Constraint Conditions, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1131-1145.  doi: 10.1007/s00376-001-0028-y
    [3] ZHANG Xiaoyan, WANG Bin, JI Zhongzhen, Qingnong XIAO, ZHANG Xin, 2003: Initialization and Simulation of a Typhoon Using 4-Dimensional Variational Data Assimilation-Research on Typhoon Herb(1996), ADVANCES IN ATMOSPHERIC SCIENCES, 20, 612-622.  doi: 10.1007/BF02915504
    [4] Yaodeng CHEN, Ruizhi ZHANG, Deming MENG, Jinzhong MIN, Lina ZHANG, 2016: Variational Assimilation of Satellite Cloud Water/Ice Path and Microphysics Scheme Sensitivity to the Assimilation of a Rainfall Case, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1158-1170.  doi: 10.1007/s00376-016-6004-3
    [5] FANG Changluan, ZHENG Qin, WU Wenhua, DAI Yi, 2009: Intelligent Optimization Algorithms to VDA of Models with on/off Parameterizations, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1181-1197.  doi: 10.1007/s00376-009-8084-9
    [6] HUANG Sixun, CAO Xiaoqun, DU Huadong, WANG Tingfang, XIANG Jie, 2006: Retrieval of Atmospheric and Oceanic Parameters and the Relevant Numerical Calculation, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 106-117.  doi: 10.1007/s00376-006-0011-8
    [7] Li Shuyong, Wang Bin, Zhang Xin, 2001: The Parallel Computing of GPS Ray-shooting Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1185-1191.  doi: 10.1007/s00376-001-0032-2
    [8] Wang Yuan, Wu Rongsheng, 2001: Theoretical Aspect of Suitable Spatial Boundary Condition Specified for Adjoint Model on Limited Area, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 1081-1089.  doi: 10.1007/s00376-001-0024-2
    [9] Zhu Jiang, Masafumi Kamachi, Zhou Guangqing, 2002: Nonsmooth Optimization Approaches to VDA of Models with on/ off Parameterizations: Theoretical Issues, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 405-424.  doi: 10.1007/s00376-002-0075-z
    [10] WANG Yunfeng, WANG Bin, 2003: The Variational Assimilation Experiment of GPS Bending Angle, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 479-486.  doi: 10.1007/BF02690806
    [11] KUANG Zheng, WANG Bin, YANG Hualin, 2003: A Rapid Optimization Algorithm for GPS Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 437-441.  doi: 10.1007/BF02690801
    [12] Fabien CARMINATI, Nigel ATKINSON, Brett CANDY, Qifeng LU, 2021: Insights into the Microwave Instruments Onboard the Fengyun 3D Satellite: Data Quality and Assimilation in the Met Office NWP System, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1379-1396.  doi: 10.1007/s00376-020-0010-1
    [13] Fabien CARMINATI, Stefano MIGLIORINI, 2021: All-sky Data Assimilation of MWTS-2 and MWHS-2 in the Met Office Global NWP System., ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1682-1694.  doi: 10.1007/s00376-021-1071-5
    [14] ZHANG Meng, NI Yunqi, ZHANG Fuqing, 2007: Variational Assimilation of GPS Precipitable Water Vapor and Hourly Rainfall Observations for a Meso- Scale Heavy Precipitation Event During the 2002 Mei-Yu Season, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 509-526.  doi: 10.1007/s00376-007-0509-8
    [15] Fuqing ZHANG, Meng ZHANG, James A. HANSEN, 2009: Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1-8.  doi: 10.1007/s00376-009-0001-8
    [16] WANG Yunfeng, WANG Bin, HAN Yueqi, ZHU Min, HOU Zhiming, ZHOU Yi, LIU Yudi, KOU Zheng, 2004: Variational Data Assimilation Experiments of Mei-Yu Front Rainstorms in China, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 587-596.  doi: 10.1007/BF02915726
    [17] WANG Bin, LIU Juanjuan, WANG Shudong, CHENG Wei, LIU Juan, LIU Chengsi, Qingnong XIAO, Ying-Hwa KUO, 2010: An Economical Approach to Four-dimensional Variational Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 715-727.  doi: 10.1007/s00376-009-9122-3
    [18] ZENG Zhihua, DUAN Yihong, LIANG Xudong, MA Leiming, Johnny Chung-leung CHAN, 2005: The Effect of Three-Dimensional Variational Data Assimilation of QuikSCAT Data on the Numerical Simulation of Typhoon Track and Intensity, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 534-544.  doi: 10.1007/BF02918486
    [19] Fabien CARMINATI, Brett CANDY, William BELL, Nigel ATKINSON, 2018: Assessment and Assimilation of FY-3 Humidity Sounders and Imager in the UK Met Office Global Model, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 942-954.  doi: 10.1007/s00376-018-7266-8
    [20] Chuan GAO, Xinrong WU, Rong-Hua ZHANG, 2016: Testing a Four-Dimensional Variational Data Assimilation Method Using an Improved Intermediate Coupled Model for ENSO Analysis and Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 875-888.  doi: 10.1007/s00376-016-5249-1

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 2004
Manuscript revised: 10 March 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Parallel Computing of a Variational Data Assimilation Model for GPS/MET Observation Using the Ray-Tracing Method

  • 1. Key Laboratory of Pure and Applied Mathematics,Center for Computational Science and Engineering,School of Mathematicals Scienses,Peking Universty,Beijing 100871;State Key Laboratory of Numerical Modeling for Atmospherics Sciences and eophysical Fluid Dyna,National Meteorological Center, Beijing 100081,State Key Laboratory of Numerical Modeling for Atmospherics Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Scienses Beijing 100029,State Key Laboratory of Numerical Modeling for Atmospherics Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Scienses Beijing 100029

Abstract: The Spectral Statistical Interpolation (SSI) analysis system of NCEP is used to assimilate meteorological data from the Global Positioning Satellite System (GPS/MET) refraction angles with the variational technique. Verified by radiosonde, including GPS/MET observations into the analysis makes an overall improvement to the analysis variables of temperature, winds, and water vapor. However, the variational model with the ray-tracing method is quite expensive for numerical weather prediction and climate research. For example, about 4 000 GPS/MET refraction angles need to be assimilated to produce an ideal global analysis. Just one iteration of minimization will take more than 24 hours CPU time on the NCEP's Gray C90 computer. Although efforts have been taken to reduce the computational cost, it is still prohibitive for operational data assimilation. In this paper, a parallel version of the three-dimensional variational data assimilation model of GPS/MET occultation measurement suitable for massive parallel processors architectures is developed. The divide-and-conquer strategy is used to achieve parallelism and is implemented by message passing. The authors present the principles for the code's design and examine the performance on the state-of-the-art parallel computers in China. The results show that this parallel model scales favorably as the number of processors is increased. With the Memory-IO technique implemented by the author, the wall clock time per iteration used for assimilating 1420 refraction angles is reduced from 45 s to 12 s using 1420 processors. This suggests that the new parallelized code has the potential to be useful in numerical weather prediction (NWP) and climate studies.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return