Advanced Search

Volume 8 Issue 4

Oct.  1991

Article Contents

Effect of Ocean Thermal Diffusivity on Global Warming Induced by Increasing Atmospheric CO2


doi: 10.1007/BF02919265

  • A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to study the sen-sitivity of global warming to the vertical diffusivity. The results suggest that the behaviour of upper ocean tempera-ture is mainly determined by the magnitude of upper layer diffusivity and an ocean with a larger diffusivity leads to a less increase of sea surface temperature and a longer time delay for the global warming induced by increasing CO2 than that with smaller one. The global warming relative to four scenarios of CO2 emission assumed by Intergovernmental Panel of Climate Change (IPCC) is also estimated by using the model with two kinds of thermal diffusivities. The result shows that for various combinations of the CO2 emission scenarios and the diffusivities, the oceanic time delay to the global warming varies from 15 years to 70 years.
  • [1] Xu Yongfu, 1992: The Buffer Capability of the Ocean to Increasing Atmospheric CO2, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 501-510.  doi: 10.1007/BF02677083
    [2] Guo Yufu, Yu Yongqiang, Liu Xiying, Zhang Xuehong, 2001: Simulation of Climate Change Induced by CO2 Increasing for East Asia with IAP/LASG GOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 53-66.  doi: 10.1007/s00376-001-0004-6
    [3] L.S. Hingane, 1989: Effect of Increasing CO2 on the Stratospheric Level of CO and O3, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 390-392.  doi: 10.1007/BF02661544
    [4] XU Yongfu, LI Yangchun, 2009: Estimates of Anthropogenic CO2 Uptake in a Global Ocean Model, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 265-274.  doi: 10.1007/s00376-009-0265-z
    [5] ZHANG Hua, ZHANG Ruoyu, and SHI Guangyu, 2013: An updated estimation of radiative forcing due to CO2 and its effect on global surface temperature change, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1017-1024.  doi: 10.1007/s00376-012-2204-7
    [6] Mei ZHAO, Andrew J. PITMAN, 2005: The Relative Impact of Regional Scale Land Cover Change and Increasing CO2 over China, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 58-68.  doi: 10.1007/BF02930870
    [7] Changyu LI, Jianping HUANG, Yongli HE, Dongdong LI, Lei DING, 2019: Atmospheric Warming Slowdown during 1998−2013 Associated with Increasing Ocean Heat Content, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1188-1202.  doi: 10.1007/s00376-019-8281-0
    [8] Zhou Xiuji, Zou Chengzhi, Yang Peicai, 1986: A GLOBAL ANNUALLY-AVERAGED CLIMATE MODEL WITH CLOUD, WATER VAPOR AND CO2 FEEDBACKS, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 314-329.  doi: 10.1007/BF02678652
    [9] LI Yangchun, XU Yongfu, 2012: Uptake and Storage of Anthropogenic CO2 in the Pacific Ocean Estimated Using Two Modeling Approaches, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 795-809.  doi: 10.1007/s00376-012-1170-4
    [10] KOU Xingxia, ZHANG Meigen, PENG Zhen, WANG Yinghong, 2015: Assessment of the Biospheric Contribution to Surface Atmospheric CO2 Concentrations over East Asia with a Regional Chemical Transport Model, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 287-300.  doi: 10.1007/s00376-014-4059-6
    [11] Soo PARK, Seung Jin, Chang Seok, 2013: Effects of an Urban Park and Residential Area on the Atmospheric CO2 Concentration and Flux in Seoul, Korea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 503-514.  doi: 10.1007/s00376-012-2079-7
    [12] Boru MAI, Xuejiao DENG, Fang ZHANG, Hao HE, Tian LUAN, Fei LI, Xia LIU, 2020: Background Characteristics of Atmospheric CO2 and the Potential Source Regions in the Pearl River Delta Region of China, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 557-568.  doi: 10.1007/s00376-020-9238-z
    [13] Ning ZENG, 2003: Glacial-Interglacial Atmospheric CO2 Change--The Glacial Burial Hypothesis, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 677-693.  doi: 10.1007/BF02915395
    [14] Bozhen LI, Gen ZHANG, Lingjun XIA, Ping KONG, Mingjin ZHAN, Rui SU, 2020: Spatial and Temporal Distributions of Atmospheric CO2 in East China Based on Data from Three Satellites, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 1323-1337.  doi: 10.1007/s00376-020-0123-6
    [15] Chengjun XIE, Tongwen WU, Jie ZHANG, Kalli FURTADO, Yumeng ZHOU, Yanwu ZHANG, Fanghua WU, Weihua JIE, He ZHAO, Mengzhe ZHENG, 2023: Spatial Inhomogeneity of Atmospheric CO2 Concentration and Its Uncertainty in CMIP6 Earth System Models, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 2108-2126.  doi: 10.1007/s00376-023-2294-4
    [16] A. Longhetto, S. Ferrarese, C. Cassardo, C. Giraud, F. Apadttla, P. Bacci, P. Bonelli, A. Marzorati, 1997: Relationships between Atmospheric Circulation Patterns and CO2 Greenhouse-Gas Concentration Levels in the Alpine Troposphere, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 309-322.  doi: 10.1007/s00376-997-0052-7
    [17] Jiawen ZHU, Juanxiong HE, Duoying JI, Yangchun LI, He ZHANG, Minghua ZHANG, Xiaodong ZENG, Kece FEI, Jiangbo JIN, 2024: CAS-ESM2.0 Successfully Reproduces Historical Atmospheric CO2 in a Coupled Carbon−Climate Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 572-580.  doi: 10.1007/s00376-023-3172-9
    [18] Minqiang ZHOU, Qichen NI, Zhaonan CAI, Bavo LANGEROCK, Jingyi JIANG, Ke CHE, Jiaxin WANG, Weidong NAN, Yi LIU, Pucai WANG, 2023: Ground-Based Atmospheric CO2, CH4, and CO Column Measurements at Golmud in the Qinghai-Tibetan Plateau and Comparisons with TROPOMI/S5P Satellite Observations, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 223-234.  doi: 10.1007/s00376-022-2116-0
    [19] Lingyun ZHANG, Yanfang SONG, Jialin SHI, Qun SHEN, Deng HU, Qiang GAO, Wei CHEN, Kien-Woh KOW, Chengheng PANG, Nannan SUN, Wei WEI, 2022: Frontiers of CO2 Capture and Utilization (CCU) towards Carbon Neutrality, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1252-1270.  doi: 10.1007/s00376-022-1467-x
    [20] Yawen DUAN, Peili WU, Xiaolong CHEN, Zhuguo MA, 2018: Assessing Global Warming Induced Changes in Summer Rainfall Variability over Eastern China Using the Latest Hadley Centre Climate Model HadGEM3-GC2, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 1077-1093.  doi: 10.1007/s00376-018-7264-x

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1991
Manuscript revised: 10 October 1991
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Effect of Ocean Thermal Diffusivity on Global Warming Induced by Increasing Atmospheric CO2

  • 1. Institute of Atmospheric Physics, Chinese Academy of Sciences, P. O. Box 2718, Beijing 100080, China,Institute of Atmospheric Physics, Chinese Academy of Sciences, P. O. Box 2718, Beijing 100080, China

Abstract: A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to study the sen-sitivity of global warming to the vertical diffusivity. The results suggest that the behaviour of upper ocean tempera-ture is mainly determined by the magnitude of upper layer diffusivity and an ocean with a larger diffusivity leads to a less increase of sea surface temperature and a longer time delay for the global warming induced by increasing CO2 than that with smaller one. The global warming relative to four scenarios of CO2 emission assumed by Intergovernmental Panel of Climate Change (IPCC) is also estimated by using the model with two kinds of thermal diffusivities. The result shows that for various combinations of the CO2 emission scenarios and the diffusivities, the oceanic time delay to the global warming varies from 15 years to 70 years.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return