Advanced Search

Volume 7 Issue 4

Oct.  1990

Article Contents

The Dynamic Mechanism of the Formation of the Low Level Jet


doi: 10.1007/BF03008869

  • The ordinary multidimensional reductive perturbation method is generalized so as to apply to the general case including the dissipative factor. With this the corresponding Cubic-Schr?dinger equation is deduced, and by the pre-liminary study of its solution, it shows that it is more admissible to consider atmospheric meso-scalc systems as the nonlinear Cubic-Schr?dinger waves. With suitable boundary and initial conditions, the Cubic-Schr?dinger equation is numerically integrated so as to investigate the possible dynamic mechanism as well as the impacts of the nonlinear action, turbulent friction and topography to the formation of the LLJ. The results indicate that the downward transfer of the momentum and the effect of the surface friction are responsible for the concentration of the momentum in the layer between 850 and 700 hPa. The location of the horizontal concentration of momentum depends on the propaga-tion of momentum, in the process the inertia-gravity internal wave is very important, whereas turbulent friction is unfavourable for or delays the formation of the low level jet.
  • [1] Peiling FU, Kefeng ZHU, Kun ZHAO, Bowen ZHOU, Ming XUE, 2019: Role of the Nocturnal Low-level Jet in the Formation of the Morning Precipitation Peak over the Dabie Mountains, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 15-28.  doi: 10.1007/s00376-018-8095-5
    [2] Zhou Jun, Walter K. Henry, 1987: THE INTERFACE EFFECT AND THE FORMATION OF A LOW-LEVEL JET ALONG THE EAST SIDE OF THE ROCKY MOUNTAINS, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 175-184.  doi: 10.1007/BF02677064
    [3] Sun Shuqing, 1985: GRAVITY WAVES ON THE AXIS OF LOW LEVEL JET AND THEIR INSTABILITY, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 112-123.  doi: 10.1007/BF03179743
    [4] JIANG Yongqiang, WANG Yuan, HUANG Hong, 2012: A Study on the Dynamic Mechanism of the Formation of Mesoscale Vortex in Col Field, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 1215-1226.  doi: 10.1007/s00376-012-1186-9
    [5] Zhong Zhong, Wang Hanjie, 2000: A Study of the Relationship between Low-level Jet and Inversion Layer over an Agroforest Ecosystem in East China Plain?, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 299-310.  doi: 10.1007/s00376-000-0011-z
    [6] P.N. Mahajan, V.R. Mujumdar, S.P. Ghanekar, 1989: Excitation of Low-level Jet as Seen by GOES (I-O) Satellite off the Somali Coast, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 475-482.  doi: 10.1007/BF02659081
    [7] Zhu Zhengxin, Xiao Jie, 1986: NUMERICAL EXPERIMENTS ON DYNAMIC MECHANISM OF BLOCKING, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 105-114.  doi: 10.1007/BF02680049
    [8] Zhang Pei, Ni Yunqi, 1991: Effect of Nonlinear Dynamic Process on Formation and Breakdown of Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 41-50.  doi: 10.1007/BF02657363
    [9] Xu Jianjun, Wu Guoxiong, 1999: Dynamic Features and Maintenance Mechanism of Asian Summer Monsoon Subsystem, ADVANCES IN ATMOSPHERIC SCIENCES, 16, 523-536.  doi: 10.1007/s00376-999-0028-x
    [10] LIU Ge, JI Liren, SUN Shuqing, ZHANG Qingyun, 2010: An Inter-hemispheric Teleconnection and a Possible Mechanism for Its Formation, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 629-638.  doi: 10.1007/s00376-009-8172-x
    [11] Tao Zuyu, 1989: Analysis of Indian Monsoon and Associated Low-Level Circulation in 1980 and 1981, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 113-119.  doi: 10.1007/BF02656922
    [12] Jun LI, Hongbin CHEN, Zhanqing LI, Pucai WANG, Xuehua FAN, Wenying HE, Jinqiang ZHANG, 2019: Analysis of Low-level Temperature Inversions and Their Effects on Aerosols in the Lower Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1235-1250.  doi: 10.1007/s00376-019-9018-9
    [13] ZHANG Yong-Chui, ZHANG Li-Feng, LU Qing-Ping, 2011: Dynamic Mechanism of Interannual Sea Surface Height Variability in the North Pacific Subtropical Gyre, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 158-168.  doi: 10.1007/s003 76-010-0038-8
    [14] LIU Yu, LI Weiliang, ZHOU Xiuji, HE Jinhai, 2003: Mechanism of Formation of the Ozone Valley over the Tibetan Plateau in Summer Transport and Chemical Process of Ozone, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 103-109.  doi: 10.1007/BF03342054
    [15] Ping WU, Yihui DING, Yanju LIU, 2017: Atmospheric Circulation and Dynamic Mechanism for Persistent Haze Events in the Beijing-Tianjin-Hebei Region, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 429-440.  doi: 10.1007/s00376-016-6158-z
    [16] Luo Meixia, Zhu Baozhen, Zhang Xuehong, 1985: THE DYNAMIC EFFECT OF THE TIBETAN PLATEAU ON THE FORMATION OF ZONAL TYPE CIRCULATION OVER EAST ASIA, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 158-166.  doi: 10.1007/BF03179748
    [17] Yin Shuxin, Tan Xinzhen, 1989: Branches of the Summer Asian Lower-Level Jet Stream and Its Influence on the Rain Belt in China, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 377-389.  doi: 10.1007/BF02661543
    [18] Keon-Tae SOHN, Deuk-Kyun RHA, Young-Kyung SEO, 2003: The 3-Hour-Interval Prediction of Ground-Level Temperature in South Korea Using Dynamic Linear Models, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 575-582.  doi: 10.1007/BF02915500
    [19] Bruno FERRERO, Marcos TONELLI, Fernanda MARCELLO, Ilana WAINER, 2021: Long-term Regional Dynamic Sea Level Changes from CMIP6 Projections, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 157-167.  doi: 10.1007/s00376-020-0178-4
    [20] Wang Guomin, 1993: One Possible Mechanism for the Principal Mode of Atmospheric Low-Prequency Variability in the Northern Hemisphere Winter, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 54-60.  doi: 10.1007/BF02656953

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 October 1990
Manuscript revised: 10 October 1990
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

The Dynamic Mechanism of the Formation of the Low Level Jet

  • 1. Department of Geophysics, Peking University, Beijing 100871,Department of Geophysics, Peking University, Beijing 100871

Abstract: The ordinary multidimensional reductive perturbation method is generalized so as to apply to the general case including the dissipative factor. With this the corresponding Cubic-Schr?dinger equation is deduced, and by the pre-liminary study of its solution, it shows that it is more admissible to consider atmospheric meso-scalc systems as the nonlinear Cubic-Schr?dinger waves. With suitable boundary and initial conditions, the Cubic-Schr?dinger equation is numerically integrated so as to investigate the possible dynamic mechanism as well as the impacts of the nonlinear action, turbulent friction and topography to the formation of the LLJ. The results indicate that the downward transfer of the momentum and the effect of the surface friction are responsible for the concentration of the momentum in the layer between 850 and 700 hPa. The location of the horizontal concentration of momentum depends on the propaga-tion of momentum, in the process the inertia-gravity internal wave is very important, whereas turbulent friction is unfavourable for or delays the formation of the low level jet.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return