Advanced Search
Article Contents

Distributed Parallelization of a Global Atmospheric Data Objective Analysis System


doi: 10.1007/BF03342060

  • It is difficult to parallelize a subsistent sequential algorithm. Through analyzing the sequentialalgorithm of a Global Atmospheric Data Objective Analysis System, this article puts forward a distributedparallel algorithm that statically distributes data on a massively parallel processing (MPP) computer.The algorithm realizes distributed parallelization by extracting the analysis boxes and model grid pointlatitude rows with leaped steps, and by distributing the data to different processors. The parallel algorithmachieves good load balancing, high parallel efficiency, and low parallel cost. Performance experiments ona MPP computer are also presented.
  • [1] S.K. Sinha, S. Rajamani, 1995: Multivariate Objective Analysis of Wind and Height Fields in the Tropics, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 233-244.  doi: 10.1007/BF02656836
    [2] S. N. Bavadekar, R. M. Khaladkar, 1994: Estimation of Winds at Different Isobaric Levels Based on the Observed Winds at 850 hPa Level Using Double Fourier Series, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 327-334.  doi: 10.1007/BF02658152
    [3] S. K. Sinha, D. R. Talwalkar, S. Rajamani, 1987: ON SOME ASPECTS OF OBJECTIVE ANALYSIS OF HUMI-DITY OVER INDIAN REGION BY THE OPTIMUM INTERPOLATION METHOD, ADVANCES IN ATMOSPHERIC SCIENCES, 4, 332-342.  doi: 10.1007/BF02663603
    [4] P. N. Mahajan, D. R. Talwalkar, S. Nair, S. Rajamani, 1992: Construction of Vertical Wind Profile from Satellite-Derived Winds for Objective Analysis of Wind Field, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 237-246.  doi: 10.1007/BF02657514
    [5] S. K. Sinha, S. G. Narkhedkar, D. R. Talwalkar, S. Rajamani, 1992: Some Experiments with Multivariate Objective Analysis Scheme of Heights and Winds Using Optimum Interpolation, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 431-440.  doi: 10.1007/BF02677075
    [6] S. K. Sinha, D, R. Talwalkar, S. G. Narkhedkar, P. L. Kulkarni, S. Nair, S. Rajamani, 1990: Use of Surface Observations to Estimate Upper Air Humidity for the Objective Analysis of Relative Humidity over Indian Region, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 491-501.  doi: 10.1007/BF03342567
    [7] S.K. Sinha, D.R. Talwalkar, S.G. Narkhedkar, S. Rajamani, 1989: A Scheme for Objective Analysis of Wind Field Incorporating Multi-Weighting Functions in the Optimum Interpolation Method, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 435-446.  doi: 10.1007/BF03342547
    [8] Chao Jiping, Yuan Shaoyu, Chao Qingchen, Tian Jiwei, 2002: A Data Analysis Study on the Evolution of the EI Ni?o/ La Ni?a Cycle, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 837-844.  doi: 10.1007/s00376-002-0048-2
    [9] Banglin ZHANG, Vijay TALLAPRAGADA, Fuzhong WENG, Jason SIPPEL, Zaizhong MA, 2015: Use of Incremental Analysis Updates in 4D-Var Data Assimilation, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 1575-1582.  doi: 10.1007/s00376-015-5041-7
    [10] C. V. Singh, R. S. Adhikari, H. P. Garg, 2002: Analysis of the Statistical Behaviour of Daily Maximum and Monthly Rainfall Data at New Delhi During Monsoon Period, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 425-432.  doi: 10.1007/s00376-002-0076-y
    [11] Chuan GAO, Xinrong WU, Rong-Hua ZHANG, 2016: Testing a Four-Dimensional Variational Data Assimilation Method Using an Improved Intermediate Coupled Model for ENSO Analysis and Prediction, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 875-888.  doi: 10.1007/s00376-016-5249-1
    [12] Zhou Yushu, Deng Guo, Gao Shouting, Xu Xiangde, 2002: The Wave Train Characteristics of Teleconnection Caused by the Thermal Anomaly of the Underlying Surface of the Tibetan Plateau. Part Ⅰ: Data Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 583-593.  doi: 10.1007/s00376-002-0002-3
    [13] SUN Jianhua, ZHANG Xiaoling, QI Linlin, ZHAO Sixiong, 2005: An Analysis of a Meso-β System in a Mei-yu Front Using the Intensive Observation Data During CHeRES 2002, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 278-289.  doi: 10.1007/BF02918517
    [14] HU Zhiqun, and LIU Liping, 2014: Applications of Wavelet Analysis in Differential Propagation Phase Shift Data De-noising, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 825-835.  doi: 10.1007/s00376-013-3095-y
    [15] Hong WANG, Hengchi LEI, Jiefan YANG, 2017: Microphysical Processes of a Stratiform Precipitation Event over Eastern China: Analysis Using Micro Rain Radar data, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1472-1482.  doi: 10.1007/s00376-017-7005-6
    [16] Zhang Renhe, Zhao Gang, Tan Yanke, 2001: Meridional Wind Stress Anomalies over Tropical Pacific and the Onset of El Nino. Part Ⅰ: Data Analysis, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 467-480.  doi: 10.1007/s00376-001-0038-9
    [17] ZHANG Jingyong, DONG Wenjie, FU Congbin, WU Lingyun, 2003: The Influence of Vegetation Cover on Summer Precipitation in China: a Statistical Analysis of NDVI and Climate Data, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 1002-1006.  doi: 10.1007/BF02915523
    [18] Kong Fanyou, Mao jietai, 1994: A Model Study of Three Dimensional Wind Field Analysis from Dual-Doppler Radar Data, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 162-174.  doi: 10.1007/BF02666543
    [19] DING Jincai, YANG Yinming, YE Qixin, HUANG Yan, MA Xiaoxing, MA Leiming, Y. R. GUO, 2007: Moisture Analysis of a Squall Line Case Based on Precipitable Water Vapor Data from a Ground-Based GPS Network in the Yangtze River Delta, ADVANCES IN ATMOSPHERIC SCIENCES, 24, 409-420.  doi: 10.1007/s00376-007-0409-y
    [20] HAN Bo, ZHAO Cailing, LÜ Shihua, WANG Xin, 2015: A Diagnostic Analysis on the Effect of the Residual Layer in Convective Boundary Layer Development near Mongolia Using 20th Century Reanalysis Data, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 807-820.  doi: 10.1007/s00376-014-4164-6

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2003
Manuscript revised: 10 January 2003
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Distributed Parallelization of a Global Atmospheric Data Objective Analysis System

  • 1. College of Computer Science, National University of Defense Technology, Changsha 410073,College of Computer Science, National University of Defense Technology, Changsha 410073,Meteorological Center of Airforce, Beijing 100843

Abstract: It is difficult to parallelize a subsistent sequential algorithm. Through analyzing the sequentialalgorithm of a Global Atmospheric Data Objective Analysis System, this article puts forward a distributedparallel algorithm that statically distributes data on a massively parallel processing (MPP) computer.The algorithm realizes distributed parallelization by extracting the analysis boxes and model grid pointlatitude rows with leaped steps, and by distributing the data to different processors. The parallel algorithmachieves good load balancing, high parallel efficiency, and low parallel cost. Performance experiments ona MPP computer are also presented.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return