Advanced Search
Article Contents

Modeling Marine Stratocumulus with a Detailed Microphysical Scheme


doi: 10.1007/BF03342546

  • A one-dimensional 3rd-order turbulence closure model with size-resolved microphysics and radiative transfer has been developed for investigating aerosol and cloud interactions of the stratocumulus-topped marine boundary layer.A new method is presented for coupling between the dynamical model and the microphysical model.This scheme allows the liquid water related correlations to be directly calculated rather than parameterized.On 21 April 2001,a marine stratocumulus was observed by the Caesar aircraft over the west Pacific Rim south of Japan during the 2001 APEX/ACE-Asia field measurements.This cloud is simulated by the model we present here.The model results show that the general features of the stratocumulus-topped marine boundary layer predicted by the model are in agreement with the measurements.A new onboard cloud condensation nuclei (CCN) counter provides not only total CC Nnumber concentration (as the traditional CCN counters do at a certain supersaturation) but also the CCN size distribution information.Using these CCN data,model responses to different CCN initial concentrations are examined.The model results are consistent with both observations and expectations.The numerical results show that the cloud microphysical properties are changed fundamentally by differentinitial CCN concentrations but the cloud liquid water content does not differ significantly.Different initial CCN loadings have large impacts on the evolution of cloud microstructure and radiation transfer while they have a modest effect on thermodynamics.Increased CCN concentration leads to significant decrease of cloud effective radius.
  • [1] D.M. CHATE, RT. . WAGHMARE, C.K. JENA, V. GOPALAKRISHNAN, P. MURUGAVEL, Sachin D. GHUDE, Rachana KULKARNI, P.C. S. DEVARA, 2018: Cloud Condensation Nuclei over the Bay of Bengal during the Indian Summer Monsoon, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 218-223.  doi: 10.1007/s00376-017-6331-z
    [2] ZHAO Chunsheng, Yutaka ISHIZAKA, WU Guoxiong, WANG Huijun, Da-Lin ZHANG, 2004: Retraction:Modeling Marine Stratocumulus with a Detailed Microphysical Scheme, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 382-382.  doi: 10.1007/BF03342548
    [3] Venkat NR. Mukku, 1990: The Ozone, Aerosol Depletion and Condensation Nuclei Events in the Stratosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 192-196.  doi: 10.1007/BF02919157
    [4] Jiefan YANG, Hengchi LEI, Yuhuan LÜ, 2017: Airborne Observations of Cloud Condensation Nuclei Spectra and Aerosols over East Inner Mongolia, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1003-1016.  doi: 10.1007/s00376-017-6219-y
    [5] Xiaofei LI, Qinghong ZHANG, Huiwen XUE, 2017: The Role of Initial Cloud Condensation Nuclei Concentration in Hail Using the WRF NSSL 2-moment Microphysics Scheme, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1106-1120.  doi: 10.1007/s00376-017-6237-9
    [6] Xiaojian ZHENG, Xiquan DONG, Dale M. WARD, Baike XI, Peng WU, Yuan WANG, 2022: Aerosol-Cloud-Precipitation Interactions in a Closed-cell and Non-homogenous MBL Stratocumulus Cloud, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 2107-2123.  doi: 10.1007/s00376-022-2013-6
    [7] Sang Seo PARK, Yeonjin JUNG, Yun Gon LEE, 2016: Spectral Dependence on the Correction Factor of Erythemal UV for Cloud, Aerosol, Total Ozone, and Surface Properties: A Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 865-874.  doi: 10.1007/s00376-016-5201-4
    [8] LI Jun, CHEN Hongbin, Zhanqing LI, WANG Pucai, Maureen CRIBB, FAN Xuehua, 2015: Low-Level Temperature Inversions and Their Effect on Aerosol Condensation Nuclei Concentrations under Different Large-Scale Synoptic Circulations, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 898-908.  doi: 10.1007/s00376-014-4150-z
    [9] Yuan WANG, Jonathan M. VOGEL, Yun LIN, Bowen PAN, Jiaxi HU, Yangang LIU, Xiquan DONG, Jonathan H. JIANG, Yuk L. YUNG, Renyi ZHANG, 2018: Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 234-247.  doi: 10.1007/s00376-017-7091-5
    [10] Jun ZHANG, Jiming SUN, Wei DENG, Wenhao HU, Yongqing WANG, 2023: The Importance of the Shape Parameter in a Bulk Parameterization Scheme to the Evolution of the Cloud Droplet Spectrum during Condensation, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 155-167.  doi: 10.1007/s00376-022-2065-7
    [11] Hui-Wen LAI, Fuqing ZHANG, Eugene E. CLOTHIAUX, David R. STAUFFER, Brian J. GAUDET, Johannes VERLINDE, Deliang CHEN, 2020: Modeling Arctic Boundary Layer Cloud Streets at Grey-zone Resolutions, ADVANCES IN ATMOSPHERIC SCIENCES, 37, 42-56.  doi: 10.1007/s00376-019-9105-y
    [12] Yangang LIU, Man-Kong YAU, Shin-ichiro SHIMA, Chunsong LU, Sisi CHEN, 2023: Parameterization and Explicit Modeling of Cloud Microphysics: Approaches, Challenges, and Future Directions, ADVANCES IN ATMOSPHERIC SCIENCES, 40, 747-790.  doi: 10.1007/s00376-022-2077-3
    [13] Yuhuan LÜ, Hengchi LEI, Jiefan YANG, 2017: Aircraft Measurements of Cloud-Aerosol Interaction over East Inner Mongolia, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 983-992.  doi: 10.1007/s00376-017-6242-z
    [14] Qiu Jinhuan, 1995: Two-wavelength Lidar Measurement of Cloud-aerosol Optical Properties, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 177-186.  doi: 10.1007/BF02656830
    [15] YUE Caijun, SHOU Shaowen, Xiaofan LI, 2009: Water Vapor, Cloud, and Surface Rainfall Budgets Associated with the Landfall of Typhoon Krosa (2007): A Two-Dimensional Cloud-Resolving Modeling Study, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1198-1208.  doi: 10.1007/s00376-009-8135-2
    [16] GAO Wenhua, SUI Chung-Hsiung, 2013: A Modeling Analysis of Rainfall and Water Cycle by the Cloud-resolving WRF Model over the Western North Pacific, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1695-1711.  doi: 10.1007/s00376-013-2288-8
    [17] Feng ZHANG, Xin-Zhong LIANG, ZENG Qingcun, Yu GU, and Shenjian SU, 2013: Cloud-Aerosol-Radiation (CAR) ensemble monitoring system: Overall accuracy and efficiency, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 955-973.  doi: 10.1007/s00376-012-2171-z
    [18] XIE Xiaoning, LIU Xiaodong, 2013: Analytical Studies of the Cloud Droplet Spectral Dispersion Influence on the First Indirect Aerosol Effect, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1313-1319.  doi: 10.1007/s00376-012-2141-5
    [19] Chuanfeng ZHAO, Yuan WANG, Husi LETU, 2022: New Progress and Challenges in Cloud–Aerosol–Radiation–Precipitation Interactions: Preface for a Special Issue, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1983-1985.  doi: 10.1007/s00376-022-2009-2
    [20] Xinyong SHEN, Wenyan HUANG, Chunyan GUO, Xiaocen JIANG, 2016: Precipitation Responses to Radiative Effects of Ice Clouds: A Cloud-Resolving Modeling Study of a Pre-Summer Torrential Precipitation Event, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1137-1142.  doi: 10.1007/s00376-016-5218-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2004
Manuscript revised: 10 January 2004
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Modeling Marine Stratocumulus with a Detailed Microphysical Scheme

  • 1. Department of Atmospheric Science,School of Physics,Peking University,Beijing 100871,HyARC,Nagoya University,Nagoya,Japan

Abstract: A one-dimensional 3rd-order turbulence closure model with size-resolved microphysics and radiative transfer has been developed for investigating aerosol and cloud interactions of the stratocumulus-topped marine boundary layer.A new method is presented for coupling between the dynamical model and the microphysical model.This scheme allows the liquid water related correlations to be directly calculated rather than parameterized.On 21 April 2001,a marine stratocumulus was observed by the Caesar aircraft over the west Pacific Rim south of Japan during the 2001 APEX/ACE-Asia field measurements.This cloud is simulated by the model we present here.The model results show that the general features of the stratocumulus-topped marine boundary layer predicted by the model are in agreement with the measurements.A new onboard cloud condensation nuclei (CCN) counter provides not only total CC Nnumber concentration (as the traditional CCN counters do at a certain supersaturation) but also the CCN size distribution information.Using these CCN data,model responses to different CCN initial concentrations are examined.The model results are consistent with both observations and expectations.The numerical results show that the cloud microphysical properties are changed fundamentally by differentinitial CCN concentrations but the cloud liquid water content does not differ significantly.Different initial CCN loadings have large impacts on the evolution of cloud microstructure and radiation transfer while they have a modest effect on thermodynamics.Increased CCN concentration leads to significant decrease of cloud effective radius.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return