Advanced Search
Article Contents

Mitigation Options for Methane, Nitrous Oxide and Nitric Oxide Emissions from Agricultural Ecosystems


doi: 10.1007/s00376-000-0045-2

  • An experimental study on mitigation of greenhouse gas (CH4, N2O and NO) emission has been conducted in a typical cropping system of Southeast China for 4 years. By simultaneous measurement, the CH4, N2O and NO emission fluxes from rice-wheat rotation fields, effects of fertilization, water management, temperature and soil moisture were investigated. Temperature, fertilization and water status were found to be the key factors to regulate CH4, N2O and NO emissions. Based on the experimental results, some agricultural measures were recommended as technical options to mitigate greenhouse gas emissions from rice-wheat rotation ecosystems. These mitigation measures are reducing mineral N input, coupling organic manure with chemical fertilizers, applying fertilizers which release available N slowly during periods with intensive plant activity, and applying dry fermented organic manure and well management of water and fertilizer.
  • [1] M. Mohsin IQBAL, M. Arif GOHEER, 2008: Greenhouse Gas Emissions from Agro-Ecosystems and Their Contribution to Environmental Change in the Indus Basin of Pakistan, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 1043-1052.  doi: 10.1007/s00376-008-1043-z
    [2] Surachai SATHITKUNARAT, Prungchan WONGWISES, Rudklao PAN-ARAM, ZHANG Meigen, 2006: Carbon Monoxide Emission and Concentration Models for Chiang Mai Urban Area, ADVANCES IN ATMOSPHERIC SCIENCES, 23, 901-908.  doi: 10.1007/s00376-006-0901-9
    [3] WANG Mingxing, LIU Qiang, YANG Xin, 2004: A Review of Research on Human Activity Induced Climate Change I. Greenhouse Gases and Aerosols, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 314-321.  doi: 10.1007/BF02915561
    [4] Wang Mingxing, Shangguan Xingjian, Shen Renxing, Wassmann Reiner, Seiler Wolfgang, 1993: Methane Production, Emission and Possible Control Measures in the Rice Agriculture, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 307-314.  doi: 10.1007/BF02658136
    [5] Xiang LI, Yiyong LUO, 2016: Response of North Pacific Eastern Subtropical Mode Water to Greenhouse Gas Versus Aerosol Forcing, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 522-532.  doi: 10.1007/s00376-015-5092-9
    [6] Israel LOPEZ-COTO, Subhomoy GHOSH, Kuldeep PRASAD, James WHETSTONE, 2017: Tower-Based Greenhouse Gas Measurement Network Design——The National Institute of Standards and Technology North East Corridor Testbed, ADVANCES IN ATMOSPHERIC SCIENCES, 34, 1095-1105.  doi: 10.1007/s00376-017-6094-6
    [7] A. Longhetto, S. Ferrarese, C. Cassardo, C. Giraud, F. Apadttla, P. Bacci, P. Bonelli, A. Marzorati, 1997: Relationships between Atmospheric Circulation Patterns and CO2 Greenhouse-Gas Concentration Levels in the Alpine Troposphere, ADVANCES IN ATMOSPHERIC SCIENCES, 14, 309-322.  doi: 10.1007/s00376-997-0052-7
    [8] Zhang Renjian, Wang Mingxing, Zeng Qingcun, 2000: Global Two-Dimensional Chemistry Model and Simulation of Atmospheric Chemical Composition, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 72-82.  doi: 10.1007/s00376-000-0044-3
    [9] MA Xiaoyan, GUO Yufu, SHI Guangyu, YU Yongqiang, 2004: Numerical Simulation of Global Temperature Change during the 20th Century with the IAP/LASG GOALS Model, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 227-235.  doi: 10.1007/BF02915709
    [10] Ting WEI, Wenjie DONG, Qing YAN, Jieming CHOU, Zhiyong YANG, Di TIAN, 2016: Developed and Developing World Contributions to Climate System Change Based on Carbon Dioxide, Methane and Nitrous Oxide Emissions, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 632-643.  doi: 10.1007/s00376-015-5141-4
    [11] B. ABISH, P.V. JOSEPH, Ola. M. JOHANNESSEN, 2015: Climate Change in the Subtropical Jetstream during 1950-2009, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 140-148.  doi: 10.1007/s00376-014-4156-6
    [12] Qin SU, Buwen DONG, Fangxing TIAN, Nicholas P. KLINGAMAN, 2024: Anthropogenic Influence on Decadal Changes in Concurrent Hot and Dry Events over China around the Mid-1990s, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 233-246.  doi: 10.1007/s00376-023-2319-z
    [13] Zhe WANG, Zifa WANG, Zhiyin ZOU, Xueshun CHEN, Huangjian WU, Wending WANG, Hang SU, Fang LI, Wenru XU, Zhihua LIU, Jiaojun ZHU, 2024: Severe Global Environmental Issues Caused by Canada’s Record-Breaking Wildfires in 2023, ADVANCES IN ATMOSPHERIC SCIENCES, 41, 565-571.  doi: 10.1007/s00376-023-3241-0
    [14] WANG Yuesi, HU Yuqiong, JI Baoming, LIU Guangren, XUE Min, 2003: An Investigation on the Relationship Between Emission/Uptake of Greenhouse Gases and Environmental Factors in Semiarid Grassland, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 119-127.  doi: 10.1007/BF03342056
    [15] Shi Guangyu, Fan Xiaobiao, 1992: Past, Present and Future Climatic Forcing due to Greenhouse Gases, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 279-286.  doi: 10.1007/BF02656938
    [16] CHANG Wenyuan, LIAO Hong, WANG Huijun, 2009: Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in eastern China over 1951-2000, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 748-762.  doi: 10.1007/s00376-009-9032-4
    [17] zhang xia, Li Mingxing, Ma Zhuguo, Yang Qing, Lv Meixia, Clark Robin, 2020: Assessment of an Evapotranspiration Deficit Drought Index in Relation to Impacts on Ecosystems, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-019-9061-test
    [18] Xia ZHANG, Mingxing LI, Zhuguo MA, Qing YANG, Meixia LV, Robin Clark, 2019: Assessment of an Evapotranspiration Deficit Drought Index in Relation to Impacts on Ecosystems, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 1273-1287.  doi: 10.1007/s00376-019-9061-6
    [19] XU Xingkai, Kazuyuki INUBUSHI, 2009: Soil Acidification Stimulates the Emission of Ethylene from Temperate Forest Soils, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1253-1261.  doi: 10.1007/s00376-009-8120-9
    [20] ZENG Qingcun, CHENG Xueling, HU Fei, PENG Zhen, 2010: Gustiness and Coherent Structure of Strong Winds and Their Role in Dust Emission and Entrainment, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 1-13.  doi: 10.1007/s00376-009-8207-3

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2000
Manuscript revised: 10 January 2000
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Mitigation Options for Methane, Nitrous Oxide and Nitric Oxide Emissions from Agricultural Ecosystems

  • 1. LAPC; Institute of Atmospheric Physics; Chinese AcadeW of Sciences; Beijing 100029,LAPC; Institute of Atmospheric Physics; Chinese AcadeW of Sciences; Beijing 100029,LAPC; Institute of Atmospheric Physics; Chinese AcadeW of Sciences; Beijing 100029,LAPC; Institute of Atmospheric Physics; Chinese AcadeW of Sciences; Beijing 100029,LAPC; Institute of Atmospheric Physics; Chinese AcadeW of Sciences; Beijing 100029,Fraunhofer Institute for Atmospheric Environmental Research; Garmisch-P; Germany,Fraunhofer Institute for Atmospheric Environmental Research; Garmisch-P; Germany,Fraunhofer Institute for Atmospheric Environmental Research; Garmisch-P; Germany

Abstract: An experimental study on mitigation of greenhouse gas (CH4, N2O and NO) emission has been conducted in a typical cropping system of Southeast China for 4 years. By simultaneous measurement, the CH4, N2O and NO emission fluxes from rice-wheat rotation fields, effects of fertilization, water management, temperature and soil moisture were investigated. Temperature, fertilization and water status were found to be the key factors to regulate CH4, N2O and NO emissions. Based on the experimental results, some agricultural measures were recommended as technical options to mitigate greenhouse gas emissions from rice-wheat rotation ecosystems. These mitigation measures are reducing mineral N input, coupling organic manure with chemical fertilizers, applying fertilizers which release available N slowly during periods with intensive plant activity, and applying dry fermented organic manure and well management of water and fertilizer.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return