Advanced Search
Article Contents

Study on Horizontal Relative Diffusion in the Troposphere and Lower Stratosphere


doi: 10.1007/s00376-000-0046-1

  • The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, 2KTL, an accelerative relative diffusion region exists, i.e., σy∝t3/2. While the puff diffusion enters a two-dimensional turbulence region, in which the diffusion scale is larger than 500 km, or time scale is larger than 1 day, divergence and convergence are main cause of horizontal diffusion. Between the two above-mentioned regimes, diffusion deviation is given byσy=2KTL. The large-scale horizontal relative diffusion parameters were obtained by analyzing the data of radioactive cloud width collected in air nuclear tests.
  • [1] Marco Y. T. LEUNG, Wen ZHOU, Chi-Ming SHUN, Pak-Wai CHAN, 2018: Large-scale Circulation Control of the Occurrence of Low-level Turbulence at Hong Kong International Airport, ADVANCES IN ATMOSPHERIC SCIENCES, 35, 435-444.  doi: 10.1007/s00376-017-7118-y
    [2] Yu Xing, Dai Jin, Jiang Weimei, Fan Peng, 2000: A Three-Dimensional Model of Transport and Diffusion of Seeding Agents within Stratus, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 617-635.  doi: 10.1007/s00376-000-0024-7
    [3] Hongxiong XU, Dajun ZHAO, 2021: Effect of the Vertical Diffusion of Moisture in the Planetary Boundary Layer on an Idealized Tropical Cyclone, ADVANCES IN ATMOSPHERIC SCIENCES, 38, 1889-1904.  doi: 10.1007/s00376-021-1016-z
    [4] Xiangzhou SONG†, Rui Xin HUANG, Dexing WU, Fangli QIAO, Guansuo WANG, 2019: Geostrophic Spirals Generated by the Horizontal Diffusion of Vortex Stretching in the Yellow Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 219-230.  doi: 10.1007/s00376-018-8091-9
    [5] Hongxiong Xu, Dajun Zhao, 2023: Effect of the vertical diffusion of moisture in the planetary boundary layer on an idealized tropical cyclone, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 
    [6] Steinar ORRE, Yongqi GAO, Helge DRANGE, Eric DELEERSNIJDER, 2008: Diagnosing Ocean Tracer Transport from Sellafield and Dounreay by Equivalent Diffusion and Age, ADVANCES IN ATMOSPHERIC SCIENCES, 25, 805-814.  doi: 10.1007/s00376-008-0805-y
    [7] Lei Xiaoen, 1985: EFFECT OF WIND VERTICAL SHEAR ON DIFFUSION CHARACTERISTICS IN THE MESOSCALE RANGE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 225-233.  doi: 10.1007/BF03179754
    [8] Liu Jinda, 1993: Improving Numerical Weather Prediction in Low Latitudes by Optimizing Diffusion Coefficients, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 345-352.  doi: 10.1007/BF02658140
    [9] Mohamed F. YASSIN, 2009: Numerical Study of Flow and Gas Diffusion in the Near-Wake behind an Isolated Building, ADVANCES IN ATMOSPHERIC SCIENCES, 26, 1241-1252.  doi: 10.1007/s00376-009-8025-7
    [10] LI Yan, ZHU Jiang, WANG Hui, 2013: The Impact of Different Vertical Diffusion Schemes in a Three-Dimensional Oil Spill Model in the Bohai Sea, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1569-1586.  doi: 10.1007/s00376-012-2201-x
    [11] Wang Mingkang, 1985: AN ANALYSIS OF THE FILTER DIFFUSION CHAMBER AND DROP FREEZING METHODS OF DETERMINING ICE NUCLEUS CONCENTRATIONS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 260-269.  doi: 10.1007/BF03179758
    [12] HUANG Yi, WANG Meihua, MAO Jietai, 2004: Retrieval of Upper Tropospheric Relative Humidity by the GMS-5 Water Vapor Channel: A Study of the Technique, ADVANCES IN ATMOSPHERIC SCIENCES, 21, 53-60.  doi: 10.1007/BF02915680
    [13] YU Xing, DAI Jin, LEI Hengchi, FAN Peng, 2005: Comparison Between Computer Simulation of Transport and Diffusion of Cloud Seeding Material Within Stratiform Cloud and the NOAA-14 Satellite Cloud Track, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 133-141.  doi: 10.1007/BF02930877
    [14] Mei ZHAO, Andrew J. PITMAN, 2005: The Relative Impact of Regional Scale Land Cover Change and Increasing CO2 over China, ADVANCES IN ATMOSPHERIC SCIENCES, 22, 58-68.  doi: 10.1007/BF02930870
    [15] Li Xin, Hu Fei, Liu Gang, Hong Zhongxiang, 2001: Multi-scale Fractal Characteristics of Atmospheric Boundary-Layer Turbulence, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 787-792.
    [16] Bangjun Cao, Xianyu Yang, JUN WEN, Qin Hu, Ziyuan Zhu, 2023: Large eddy simulation of vertical structure and size distribution of deep layer clouds, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3134-2
    [17] Shengping HE, Helge DRANGE, Tore FUREVIK, Huijun WANG, Ke FAN, Lise Seland GRAFF, Yvan J. ORSOLINI, 2024: Relative Impacts of Sea Ice Loss and Atmospheric Internal Variability on the Winter Arctic to East Asian Surface Air Temperature Based on Large-Ensemble Simulations with NorESM2, ADVANCES IN ATMOSPHERIC SCIENCES.  doi: 10.1007/s00376-023-3006-9
    [18] Yang guoxiang, Shu Cixun, 1985: LARGE SCALE ENVIRONMENTAL CONDITIONS FOR THUNDERSTORM DEVELOPMENT, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 508-521.  doi: 10.1007/BF02678749
    [19] Dongxiao WANG, Guojing LI, Lian SHEN, Yeqiang SHU, 2022: Influence of Coriolis Parameter Variation on Langmuir Turbulence in the Ocean Upper Mixed Layer with Large Eddy Simulation, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 1487-1500.  doi: 10.1007/s00376-021-1390-6
    [20] Xiaoyu REN, Yi LIU, Zhaonan CAI, Yuli ZHANG, 2022: Observations of Dynamic Turbulence in the Lower Stratosphere over Inner Mongolia Using a High-resolution Balloon Sensor Constant Temperature Anemometer, ADVANCES IN ATMOSPHERIC SCIENCES, 39, 519-528.  doi: 10.1007/s00376-021-1233-5

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 2000
Manuscript revised: 10 January 2000
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Study on Horizontal Relative Diffusion in the Troposphere and Lower Stratosphere

  • 1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry; Institute of Atmospheric Physics; Chinese Academy of Sciences; Beijing 100029

Abstract: The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, 2KTL, an accelerative relative diffusion region exists, i.e., σy∝t3/2. While the puff diffusion enters a two-dimensional turbulence region, in which the diffusion scale is larger than 500 km, or time scale is larger than 1 day, divergence and convergence are main cause of horizontal diffusion. Between the two above-mentioned regimes, diffusion deviation is given byσy=2KTL. The large-scale horizontal relative diffusion parameters were obtained by analyzing the data of radioactive cloud width collected in air nuclear tests.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return